BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CAPDE - ECPv5.12.2//NONSGML v1.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:CAPDE
X-ORIGINAL-URL:https://capde.cl
X-WR-CALDESC:Events for CAPDE
BEGIN:VTIMEZONE
TZID:UTC
BEGIN:STANDARD
TZOFFSETFROM:+0000
TZOFFSETTO:+0000
TZNAME:UTC
DTSTART:20150101T000000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;TZID=UTC:20150930T160000
DTEND;TZID=UTC:20150930T180000
DTSTAMP:20230930T122046
CREATED:20160504T023703Z
LAST-MODIFIED:20160505T110207Z
UID:2192-1443628800-1443636000@capde.cl
SUMMARY:Isovolumetric and isoperimetric inequalities for a class of capillarity functionals
DESCRIPTION:16hrs. \nPaolo Caldiroli (Universitá di Torino) \nIsovolumetric and isoperimetric inequalities for a class of\ncapillarity functionals \nAbstract: Capillarity functionals are parameter invariant functionals\ndefined on classes of two-dimensional parametric surfaces in\n$mathbb{R}^{3}$ as the sum of the area integral and an anisotropic\nterm of suitable form. In the class of parametric surfaces with the\ntopological type of the sphere and with fixed volume\, extremals of\ncapillarity functionals are surfaces whose mean curvature is\nprescribed up to a constant. For a certain class of anisotropies\nvanishing at infinity\, we prove existence and nonexistence of\nvolume-constrained\, spherical-type\, minimal surfaces for the\ncorresponding capillarity functionals. Moreover\, in some cases\, we\nshow existence of extremals for the full isoperimetric inequality. \n17hrs. \nDenis Bonhere (Université Libre de Bruxelles) \nOn the higher dimensional Extended Allen-Cahn equation \nAbstract: In this talk\, I will present results on a fourth order\nextension of Allen-Cahn in a bounded domain of R^N with Navier\nboundary conditions or in the whole space. The diffusion is driven by\na combination of the bilaplacian and the laplacian. In striking\ncontrast with the classical AC\, establishing the sign and the symmetry\n(when the domain is symmetric) of solutions minimizing the associated\nfunctional is not an easy task. For bounded solutions in R^N\, I will\npresent rigidity and Liouville type results and in particular an\nanalogue of the Gibbons’ conjecture.\nThe talk is based on a joint work with J. Földes & A. Saldaña and\nanother one with F. Hamel.
URL:https://capde.cl/seminario/isovolumetric-and-isoperimetric-inequalities-for-a-class-of-capillarity-functionals/
CATEGORIES:All
END:VEVENT
END:VCALENDAR