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ABSTRACT. We consider the following slightly subcritical problem
—Au=B(z)|u/P"'"*u in Q,
(<)
u=0 on 0,

is the Sobolev critical

where 2 is a smooth bounded domain in R", 3 < n < 6, p := Z—“

—2
exponent, ¢ is a small positive parameter and 8 € C%(Q) is a positive function. We assume that
there exists a non degenerate critical point &, € 9 of the restriction of 5 to the boundary 92

such that .

V(B(&-)7=T) - n(&x) >0,
where 1 denotes the inner normal unit vector on 92. Given any integer k > 1, we show that
for € > 0 small enough problem (gp.) has a positive solution, which is a sum of k£ bubbles which
accumulate at £, as € tends to zero. We also prove the existence of a sign changing solution
whose shape resembles a sum of a positive bubble and a negative bubble near the point &..
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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

We consider the non autonomous almost critical problem

—Au = B(x)|ulP~17u  in Q,
()
u=20 on 0f),

where Q is a smooth bounded domain in R?, 3 < n < 6, p := Z—fg is the Sobolev critical

exponent, € is a small positive parameter and the function 5 € C?(Q) is positive.

Since problem (g.) is subcritical, standard variational methods yields the existence of an infi-
nite number of sign changing solutions and at least one positive solution, see [2]. Unfortunately,
the variational approach gives very little information about the behaviour of these solutions.

A special case of problem (p.) is the following

. —Au = [uP71"fy  in Q,
(9:)
u=20 on 0f).

This problem has been extensively studied in the last decades and many works has been devoted
to study existence and asymptotic behaviour of solutions. We refer to the pioneering work by
Bahri-Li-Rey in [3], where they proved that positive solutions to problem (p?) either converge
to a positive solution of the critical problem (pg) or blow up at a finite number of points in
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as € goes to zero. More precisely, if (u.) is a bounded sequence in Hg () of positive solutions
to (pl), then (up to a subsequence) we have
k
Ues = Ug + ZO@EPUA?’@E + Ve

i=1
where 1 is a nonnegative solution to (p§), k € N, v goes to zero in Hi(Q). Here either k = 0
or ug = 0 and the function PUs is the orthogonal projection onto Hg(€2) of the "bubble’ given
by

Uselw) = (ol —2) % —— 0

s5e(x) == (n(n— 1 —

5 (6 +1o — €F) T

with 6 > 0 and & € R™. This family of functions represent all solutions to

nt2 . 1.2
—Au=wu»—2 inR", weD">R"), u>0.
In the case where a positive solution concentrates at a single point, it was proved in [0, 13, 18]
that this concentration point must be a critical point of the Robin function:

x — H(z,x),

where H(x,y) stands for the regular part of the Green function for the Laplacian in Q with
Dirichlet boundary condition (see (5.1)). Results about multiplicity of positive solutions for
problem (p!) with multiple blow up points have been also obtained, see [19] for instance.

The presence of the potential 5 in (p.) plays a crucial role for existence of positive solutions
with a large number of blow-up points. Indeed, it has been shown in [3] that problem (p})
does not admit positive solutions which concentrates at k points as € goes to zero if k is large
enough. However, for problem (p.), Pistoia and Serra studied in [16] the particular case where
B(x) = |z|% a >0, and © is the unit ball By, namely they considered the problem

—Au = |z|*ulP~ "y in By,
u=0 on 0B;.

They showed that, if € is small enough, then the above problem has a positive solution which
concentrates and blow-up at £ points at the boundary 0B;. Moreover, the solutions constructed

in [16] are invariant under the group of linear symmetries G; x O(n — 2), where G; C O(2) is
the group generated by the rotations of angle 27”. See also Peng [15] who constructed similar
solutions with more general symmetries. We also refer the reader to the papers [7, 8] and some

references therein, where asymptotic behaviour of the ground state solution (as e tends to zero)
has been considered. Precisely, it has been proven that the ground state concentrates at a single
point which approaches the boundary when ¢ tends to zero.

In this paper, we prove the existence of new type of concentrating positive solutions to problem
(pe). Precisely, we show, under some suitable conditions on the function (3, that (p.) has a
positive solutions whose asymptotic profile is a sum of k& bubbles that concentrates and blow up
at a single point at the boundary. It is worthmentioning that for £ = 1, our results work for
any dimension n > 3 and this can be seen in particular as a generalisation the main results in
[15, 16], to the problem (g.) for general domains, see Corollary 1.1 below. For k > 2, our results
here are valid for dimensions 3 < n < 6. This restriction on the dimension is technical and we
believe that with more accurate analysis they can be generalised to any dimension n > 3.

For x € 02 let n(z) be the unitary inner normal vector to 02 at . The following condition
on 3 will be assumed throughout the paper: there exists a non degenerate critical point &, € 02
of the restriction of S to the boundary 92 such that

__2
V(B(&) 7=1) -n(&) > 0.
This assumption can be rewritten as

(1.1) there is A > 0 such that V(ﬂ(f*)_l’%) = M(&).
We will first prove the following multiplicity result.
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2
Theorem 1.1. Assume that condition (1.1) holds true, that that D?(3 »—1 | 90) (§+) is negative
definite and 3 < n < 6. Then, for every k € N there exists €9 positive such that if ¢ € (0,¢e0)
problem (p:) has a positive solution ue of the form

k
1 )
'U/g = Z ﬁ(§571> p-1 U‘SE,i»Es,i + 0(1) m DLZ(Q))

where
n+1 n+1

i =€ 4 em(el,), with €2, = & +em2v; +o(em2v;), v € Tg, 00
and (up to a subsequence)
57%6&1 —d; >0, 8_17'571' —t; >0 and 87%‘5&2‘ — & | = |vi — v >0,
foralli,j=1,... k.
As a consequence of the above theorem, we have

Corollary 1.1. Assume 3 < n < 6. Suppose that £L,..., € are non degenerate critical points
of the restriction of B to the boundary 0S) such that

V(ﬂ(éi)fﬁ) n(€) >0, and D2(57%|8Q)(EZ) are negative definiteVj =1,...,¢.

Then, for e sufficiently small, problem (p:) has a positive solution ue of the form

{ k
. 1
Ue = ZZ/B( g,i)iﬁUam,gj (1) in DM(Q),

j=li=1
where §g’z — ¢ (up to a subsequence) for eachi=1,...,k and j=1,...,¢.

Remark 1.2. In the previous corollary, if we restrict k = 1 (simple concentration at each &)
the result is true for any n > 3, see Subsection 3.2 below for details.

Although we stated the result requiring B positive, it is necessary to assume it is positive near
the concentration points.

The phenomenon of multiple concentration near a point of the boundary found in Theorem 1.1
is similar to the multiplicity result of Wei and Yan [20] for a critical Lazer-McKenna conjecture
in dimensions n > 6, and to the paper by del Pino, Musso and Pistoia [12] where bubble tower
solutions to a Neumann Lin-Ni-Takagi problem has been constructed in both slightly subcritical
and slightly supercritical regimes.

The second purpose of this paper is to study existence and properties of sing-changing so-
lutions for problem (gp.). If we consider the problem (p!), then multiple peak nodal solutions
always exits. Indeed Bartsch, Micheletti and Pistoia [5] built a solution with exactly one pos-
itive and one negative concentration point. In addition, under symmetry assumptions on 2, a
solution to (pl) with exactly two positive and two negative blow-up points was constructed in

[1]-

Bubble-tower solutions to problem (p!) have been constructed in [14, 17]. The shape of these
solutions is a superpositions of positive bubbles and negative bubbles blowing up at a single
point with different velocities.

Our second result show that condition (1.1) guarantees the existence of a solution to problem
(pe) with one positive and one negative concentration points, which blow up at a the single
point &, at the boundary. More precisely we have the next result.

Theorem 1.3. Assume that condition (1.1) holds true, that D* (671’%1 | 90) (&x) is positive definite
and 3 < n < 6. Then, there exists e > 0 such that if € € (0,e0) then problem (p:) has a sign
changing solution u. of the form

1 e '
ue = B(&n) PUs, 160, — B(&2) P1Us p 6., T0(1) in DI’Q(Q)
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where
§ei = f?,i + Te,in(fg,i): 5371' € 09, fg,i = &
and (up to a subsequence)

_n—1 _ _n+l
£ ”*2(5571' — di > 0, £ 17}' —t; > O, g n+2 ‘55,1 — 5572’ — ‘Ul — ’1}2’ >0
fori=1,2.

Theorems 1.1 and 1.3 are related to a paper by Ackermann, Clapp and Pistoia, see [1]. They
studied a supercritical problem which can be reduced, using rotational symmetries, to a problem
similar to (p.) given by

(1.2)

—div(B(x)Vu) = B(x)|ulP~"fu in Q,
u=20 on 0f2.

They proved, under a similar condition to (1.1), that problem (1.2) has a solution which has the
shape of one bubble and concentrate and blow up at one point at the boundary.

The arguments used in this paper for the problem (p.) can be adapted to prove the analogous
results for problem (1.2). This leads to the construction of new types of solutions for some
supercritical problems.

Some results here are valid for dimensions 3 < n < 6. This is related to the fact that we need
2(n+1)
the size of the error term to be controlled in some appropriate norms by o(e¢ ®+2 ) which follows

by Lemma 2.1 for 3 < n < 6. We believe that our result can be extended to higher dimensions
by adding further improvement to the approximate solution constructed in Section 2.1.

The paper is organized as follows: We first recall in Section 2 some preliminary results.
Section 3 will be mainly devoted to the proofs of our main results. In these proofs we will need
some asymptotic expansions of the reduced energy functional, which is developed in Section 4.
Finally, in Section 5 we give some boundary estimates for the Green’s function.

2. PRELIMINARIES

Let us first introduce the function

n—2
(5 2 n—2

=, = -2)*+, 6>0
G rl-geye T 0

which corresponds up to translations and dilations to the standard bubble, namely, the unique
positive solution to the problem

U&g(%) = Qo

~AU=U?  inR",
U € DY2(RM),

n+2

5. We next define the function

where n > 3 and p =

_1
Wie = B(§) P TUsge.
It is easy to see that Wj¢ is a solution of the equation

—AW (z) = (§)WP(x) in R".

Let us consider the orthogonal projection
P: DY (R") — H}(Q)
defined by : given W € DV2(R"), we let PW to be defined as the unique solution to the problem
—A(PW)=—-AW in Q, PW =0 on 09Q.
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Next we describe the solutions that we are looking for with multiple concentration on a single
point on the boundary (k > 2). For simple concentration (k=1) see Subsection 3.2 for more
details. In Theorems 1.1 and 1.3 we found solutions of the form

k

1
(2.1) Ue = Z(_l))\iﬁ(fi,e) p=l PU&@&,E + ¢,
i
for fixed A\; € {0,1}. For i = 1,...,k, the dilation parameters ;. will be chosen of the form
(2.2) die = E%di for some d; > 0,
and the concentration points satisfy
fi,a = 510,5 + Ti,an(§25)7 520,5 € 09,

where 7; . = et; for some t; > 0 and fg . is given by

(2.3) & =&+ pvi + (&) g(pvs),
with
(2.4) v; € Tg, 0€) := {U eER":n(&) v= 0},

n+1
with p = en+2 and g : T¢, 02 — R is a function which satisfies
g(0) =0 and Vg(0) = 0.

Here T, 0€) stands for the tangent space of 02 at the point £*.

The function ¢ in (2.1) is small in a sense to be determined later and is to be found using a
classical fixed point argument.

We will next introduce the configuration space where the dilation parameters and the con-
centration points lie. We set d = (di,...,dg), t = (t1,...,tx) and v = (v1,...,vx), then the
configuration space is given by

A= {(d,t,v) € (0,00)" x (0,00)F x (T, 0Q)* :v; £ v; fori,j =1,...,k,i #j}.

For simplicity we will write
(2.5) View = (=1D)YbPU;,
i
1
where we have set b; := 3(§;) =1 and U; := Us, ¢, .
2.1. Lyapunov-Schmidt reduction procedure. In this subsection we will recall the main
ideas about the Lyapunov-Schmidt reduction procedure which is a crucial step to find solutions
of the form (2.1).

The first step to construct solutions to problem (p.), we need to solve some auxiliary problem.
Given (d,t,v) € A, we consider the spaces

€ 9Us, ¢, 9Us, ¢, . .

]Cfi’tv—_{ngH&(Q)/cqﬁvw——o vweleitv}.
” Q o
The following result hold.

Lemma 2.1. Assume that for some T > 0 and a fized constant C, 7/C < Tie < Ct. Then there
exist eg > 0 and a constant C > 0 such that for all € € (0,e9) and all (d,t,v) € A there exists a

) 1 . .
unique ¢, ,, € ICZ”t’U which satisfies

11—
(2.6) A(Viey + Ot +B@)|Viey + (bfi,t,v‘p : (ch,t,v + ¢fi,t,'v> € Ka,t,0

and
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(2.7)
O(a]logs\—f—r—i—(f)n;?) for n>7

68l i= ([ 1905007)" = | O(cliogel 4+ (0 1083 for  n—o

(allogs\—i—r—i-( ) 2) for n=3,4 and 5,

where § = max d;. Moreover the map A — H}(Q), defined by (d,t,v) — gbfd’t,v) is of class C!
and

(2.8) IV (a,8) Pae,0ll = Olda1,0l)-

Proof. The proof of existence and estimate (2.7) can be found in [16], see Proposition 2 there.
To prove estimate (2.8), we use the fact that the solution Pq,¢,v of (2.6) is found by a fixed point
argument. It satisfies an equation of the form

(2.9) Patv = Ad e (B + N(da,v))
where Afj’t,v : ICE”Jt"V — ICZ”Jt"V is given by
fl,t,v(‘) = Hé,t,v Z*()a
E=-AViey —BIVien" 5 (View)
and

N@) = B(IVigw + 017 Vi + ) = Vigwl (Vi) = plVigw + 071750

In the above Hd{t’v is the orthogonal projection on Kgq, and i* : L%(Q) — H(Q) is the

2n
adjunct of the standard immersion operator i : Hg(Q) — Ln-2(12). Differentiating (2.9) with
respect to the parameters t, we formally get

Oty = O (B + N(83)) + Ay (0B + 0N (6530 ).

There is a similar formula for the derivative with respect to d. Reasoning as in the proof of
Lemma 4.1 in [11] and using similar arguments as in the proof of estimate (2.7), one gets

(2.10) IVa,efaevll = Oloa,evll)-

Now, let J. : H}(Q2) — R be the energy functional associated to problem (g ):

_1 2 1 p+1l—e
wi=g [ 1Vuf = ——— [ @)

Solutions to problem (p.) can be found as critical points of the functional J.. We introduce
the reduced energy functional Z. : A — R defined by

(2.11) Zo(dst,v) = Je(Viey + Pae)-

The next lemma, which is a consequence of Lemma 2.1, reduces the existence of solutions to
problem (p.) to the one of finding critical points of the reduced energy functional Z..

Lemma 2.2. The element (d,t,v) € A is a critical point of Z. if and only if the function
ue = Vi + da gy is a critical point of the functional Je.

Proof. The proof is similar to the one of Proposition 1 in [3]. We omit it here. O
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3. PROOF OF THE MAIN THEOREMS.

In this section we prove our main results. We will treat the case of multiple concentration on
a single point on the boundary, namely when k& > 2. For the case of simple concentration (k=1)
the proof is easier and is done in Subsection 3.2. Using Lemma 2.2, the proof of Theorems 1.1
and 1.3 is then reduced to finding critical points of the reduced functional Z. defined in (2.11).

To do so we will need the asymptotic expansion of the reduced energy whose proof is given in

the next section. Let r = —p%l and define the function

(3.1) L(&,0) = D2(B750) (&) [v, 0],
Since the function g satisfies

9(0) =0 and Vg(0) =0
it is easy to see that

D(&,v) = V(B(E)") - n(&)(Dg(&)v - v) + D*(B(&) v - v

The next lemma will be proved in Section 4.

Lemma 3.1. The functional Z. : A — R has the following asymptotic expansion
(32) IE(dv t) V) = Clﬁ(f*)T + 51/}0(5*) + 51/}1 (d7 t) + 921/’2((17 t, V) + ¢3(d, ta V) + 0(62)

C'-uniformly on compact sets of A. Here c; are positive constants and the function Yj’s are
respectively given by

Po(&e) = <k%ﬁ(5*) log(B(¢2)%) — ky1 (&) "=

Dt 1 1 log(s) + kﬁ(ﬁ*)r /]Rn U170 log(Ul,D))

- (pl—ll)gw(s*)d

n—2
(3.3) ¢1(d,t) Z@( ) +esV(BE)) - n(&)t; — ealog(dy) + O(e72)R(d, ),

where R is a bounded smooth function on its arguments which does not depend on the variables
(’Ul, NN ,Uk),

(3.4) Ya(d,t,v) = —c52<—1>*i<—1>w<f*>”*

1>7

Zr £x, 0j)

and where 13 satisfies

(’)<62|log€]§> for n==~6
w?)(d’tav) =
O<52| 10g5|2> for m=3,4 and 5.
Moreover for d,t,v € A
(3.5) ] (d,t) Yi(d, t,v) ] = O(¢i(d, t,v)) 1=1,2,3.

3.1. Proof of Theorems 1.1 and 1.3. To prove our main results Theorems 1.1 and 1.3, we
need to show that the functional Z. has a critical point. Using that V(5(&)") - n(&«) > 0, see
(1.1), it is not hard to prove that the function v defined in (3.3) has a critical point (do,to)
which is a strict minimum and stable. Since,

(36) I&‘(dv t, V) - Clﬂ(ﬁ*)r - Ew()(g*) - Ewl(dv t) = O(PQ)
then, for every fixed v = (v1,...,vg) such that

1
’,Uj’ Scand ‘Ui_vj’ Z 672a.7:17k727é.7a
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there exists (de(v), te(v)) such that Vg )Z:(d(c vy, t(e,v), V) = 0. Moreover, we have
eVian¥Y1(de(v), te(v)) = eD{g¥1(do,to) - ((do.to) — (de(v), te(v))) + O(e(|(de(v), te(v)) — (do, to)[*))
2

= _pZV(d,tﬂD?(de(v)a te(v)7 V) - V(d,t)(%(de(")?te(V); V) + 0<6 ))
Now, using (3.5), one can get that

p
(3.7) [(do, to) — (de(v), te(v))| = O(=).
On the other hand, if we consider the function

Q(v) :=Zc(d(v), te(v), V),

then since (dg, to) is a critical point of 1, a Taylor expansion yields

QW) = aBE) +eto(e) + cr(de(v), te(v)) + pPa(de(v), te(v), V) + (de(v), be(v), V) + o(e?)
2
_ 015(5*Y4+-5¢@(5*)+‘€<¢d(d0,t0)4—173¢¢H(d0,t0)'((do,tO)—‘(df(V%i%(V))> )

+  PPa(de(v), te(v), V) + 0(p?)
= (&) +evo(&) + evr(do, to) + pPa(de(V), te(v), V) + o(p?).

In order to prove Theorem 1.1 we will take A; = 0 for all : = 1...,k, then the main term in the
right hand side in the above identity becomes

(-3 BV EORON RO | e ),
J

i>j "l)i - U]|n

Then, assuming I'(&,, v;) negative definite and using (3.7), the function Q(v) has a global max-
imum. This concludes the proof of Theorem 1.1.

Finally, to prove Theorem 1.3, we take k = 2, A = 0 and Ay = 1. Then, p?¥3(d(v), te(v), V)
becomes

£ (dH(v)d(v)) 2 (vt (v
5(5 ) ( e( |)Ule(_ 2])2’,1 5( ) 6( ) _1_21-\(5*’,01)

=1

PP2(de(v), te(v), v) =

Then, assuming now that I'(&,,v;) is positive definite and using once again (3.7), the function
Q(v) has a critical point vo and Theorem 1.3 follows at once.

3.2. Simple concentration at the boundary. Looking for solutions to problem (gp.) with
simple concentration at the boundary is considerably less technical than multiple concentration.
The procedure is very similar to the one of the proof of Theorem 1.3 in [1], we sketch the main
ideas here.

Let us consider the function

(3.8) Wi 0 = B€) 7T PUsg,
where the dilation parameter § will be chosen of the form
(3.9) § = en=2d for some d > 0,
and the concentration points satisfy

g=¢"+mE), e,
with 7 = et for some t > 0.

The configuration space where the dilation parameters and the concentration points lie is
given by

Ay e {(d,t,g°> € (0,50) x (0,00) x aQ}.

Similarly to Lemma 2.1 we can show that if ¢ small enough, then for any (d,t,£°) € Ay there
exists ¢, coy Which chairs similar properties than the ones in (2.6) and (2.7).
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As before, the reduced energy functional Z2 : Ay — R is defined by
(3.10) T(d, t,€°%) = J-(Wi, co + ¢34 c0)-

It holds true that a parameter (d,t,£%) € Ay is a critical point of the functional Z?2 if and
only if the function W, e+ o o isa solution to problem (p).

Next we show the asymptotic expansion for the reduced energy functional Z2 in terms of the
parameters (d,t,£0). A straightforward computations and the result in Lemma 2.1 show that

Je(Wae0 + 51 60) = J (Wi, c0) + 0(e)

for every n > 3.
In addition, taking £ = 1 in Lemma 4.1, it is easy to see that

Ia? (d, 1, 50) = JE(Wit,go) + o(e)

d n—2
= af@) +e(@(§) +aTEE)) nE  calog(d,)) +ole).
Now, using that there exists a non degenerate critical point &, € 02 of the restriction of 8 to
the boundary 9€2 such that
__1
V(B(&) #1) - n(&) > 0.

one can show, as in the proof of Theorem 1.3 in [1], that Z2 has a critical point. This conclude
the proof.

4. ESTIMATES ON THE ENERGY

4.1. Proof of Lemma 3.1. The objective of this section is to give a proof of Lemma 3.1. This
lemma gives a asymptotic expansion of the reduced energy functional I. : A — R defined by

I(d,t,v) = J-(Vitv + Paty)
in terms of the parameters (d, t,v). Recall that for (d,t,v) € A we write
Viaew = (=10, PU;,
i

where b; := [3(&)_?%1 and U; := Uy, ¢,. Here

& =& + (&) = &+ pvi +1(€)g(pvi) +Tin(&]),
where §; = disz%é, T = t;€,

v; € Tg, 002 := {v € R" : (&) - v = 0},
p= 5% and g : Tg, 0€) — R satisfies that
9(0) =0 and Vg(0) = 0.

Notice that since &, is a critical point of § restricted to the boundary then

VE(&) -v=0 for all v € T¢, €.

__2
p—1’

(4.1) B(&)" = BE) +eV(BE)") - n(€)ti + p°T(Exyvi) + 0(€2),
where T'(&,, v;) is defined in (3.1). Indeed, if we use a Taylor expansion
B&)" = B(& + poi+n(E)g(pvi) + Tin(&)))"

= B&) + V(BE)) - (pvi + (&) g(pvi) + Tin(&]))
D(B(&)") - (pvi + n(&)g(pvi) + Tin(€)))? + o(€)
B(&)" +eV(BE") - n(€))t:
p* (V(B(&)) - n(&)(D2g(€)vs - vi) + DA(B(E))vy - vi) + o(e?)
B(&)" +eV(B(E)") - n(&)ti + P2F(§*7 v;) + 0(52),

Note also that, for r := we can write

_l’_

_I_
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because
(&) = n(&) + O, where |0 = O(p).
We will denote

71=/RnUfJorl,72 /U1oand73—/ U ZOQUlo)

Equation (4.1) will be use to compute the following expansions.

Lemma 4.1. We have the following expansions
(4.2)

1 £ 2_& r
3 | IVVie 2 = ka(E)

~ k CnY k d.: n—2 n
te (;vw(s*)?“)-n(ggzti—ﬁw 25 (5) >+0<ew>nl<d,t>

+p° EZF(&,W)+vzﬁ(£*)r2(—1)”(—1wﬁ
i i>7 t J
+o(€?)
p+1 — 71 k T
+1/ﬁ ovl ST
’Yl k d n—2 n
(4.3) - z—:( v(B( (&) th— csz(Z) >+O(5"2)R2(dat)
p-l-l i ti
. & no2 nod
d;? d;? tit;
£ | T )+ 2Ble) SN DY
1>7 ¢ J
+ o(e?)

and
(4.4

e n—
—l—l(
€ (n

p+1

where T'(&x,v;) is defined in (3.1) and Ry’s are bounded smooth functions on their arguments
which does not depend on the variables (v1,...,vk).

/ BV log(Vig ) = - B Y losld) + - S k(e Tor(ALE.))
i=1

p+1

B Tog(E) + ~SRA(E) 0 + o),

Proof. We write
n—2
PUi(x) = Ui(x) = 6; * H(x,&) + 1z, &)
Lemma 5.2 shows that function II(x,&;) satisfies

n

(&, &) = 58" ('Yl,ﬂW)_'_O(E))’

(4.5) nio
0, *
=c R(t;) + O(e) |,
here the function R is smooth on its parameters and does not depend on (v1,...,vg).

We subdivide the proof into three steps.
STEP 1: Expansion of the term / IVVE o s%
Q )
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We write
1
(4.6) 5/ IVViesl® = /|Vb PU* 4+ (- 1)Ajbibj/ VPU; - VPU;.
Q i>j Q
Let

/ Vb, PU;|> = b2 / U? PU;
Q Q

n-2

_ o / an / UPS. T H(z,€) + / UPTI(z, &)
Q Q Q

= Aj;+ Az + A3

Using equation (4.1), we have the estimate

Ay P= b2/ UP+1 _ b2/ UP+1

‘;z

0 = B (1+ 0(")

=B(&) +enV(B(E)") - n(&)ts + p°T (&, vs) + o(€2).

On the other hand, using Lemma 5.1 and equation (4.1), we have

n—2
Ay = —Ban [ UPS,? H(z,&) = — b2502 / UPgon H (0 + €, 61)
Q

8

= — V20" 2 H (&, )2 (1 + O(6%))

n— Cn
_—’72b25 2|27_,|n—2 (1—|—O(Tz))

=—7 <6i>n_2 B(&)" (en + O(1))

Ti

— — ccame (d")H BE) +O0(e).

t;

Moreover, using equation (4.5), we get
n—2
A= /Q UPTL(x, &) :/Q_gi 6; 2 UL oI(0iy + &, &)

%
n—2
5T, 6) /]R UP,(1 + o(1))
nt2
n—2 2

2057;7”(73(7%’) +O(¢))
=2 R(t, d) + o(€?)

11

here the function R(¢,d) does not depend on the variable (vi,...,v;). Using equations (4.7),

(4.8) and (4.9) we have

(4.10)
d;

n—2
3 | IVBPUR = Baey + o(Boser) e -2 (3) AEr) +0ETR@Y

"o\t

2T (6 0) + O
5 . Ui €).
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We continue with the expansion of second term in equation (4.6):
(4.11)
bibj/ VPU;-VPU; = bibj/ UPPU;
Q Q
-2

—bib /Q UP(U; — 6,7 H(x,&) + (x,£;))

n—2 ap n=2
=b;b;(0;6;) 2 /, U o( = — H(0wy + &, &5)) + bibjo; /, UPTL(6iy + &, &)
e (02 + |0y + & — &%) "% T

n=2 a n-2
=b;b;j(6:0;) 2 /H Ufo(m — H(&,&;)) +bibso; /M iy + &y &5)2

9

ag
) Ul,(]( n—
- (82 + |8y + & — &[2)" 7
n—2
dﬁ d;? tit; 562
=p*a0B(&)" 7 + O(p* 5) + O(e72)R(t. d) + o(e?),

|Z_ j’n

e T (&) —anH Gy 1 6.))
i TS

the last equality is due to the follovvlng computations
ao

bib;(8:0;) "% / Do — H(&, &)
& — &l
n—2 1 1
= bzb(ézd)T/ ur (10( — — = )
J J th_ifz 1,0 ’52 _ §]|n 2 ’&.z - §j|n_2
n=2 n-2 c 27, T;
= bibjo,* 6. ° — " | (n- Y+ O (max{r,T;
J J |510 _ f?’n_Q <( )|€0 50’2 ( { ]}))>
n—2 n—2

d;? d;? titg
|(vi — vj) + pes((Avi, v;) — (Avj, v5))["

= B(&)2B(&)%cn | p° +0(p?)

d; % d.? tit;
( ) ’Ui _ ,Uj‘n (
and
n—2 1 1
bibsao(6id) 2" [, Ul = )
J J ”g—fl L0 (6]2-+|5¢y+&—§j|2)72 1§ = &2
n—2
= bibjao(d;0;) 2 /m&i Uf,00<\§i =&yl + (& - &) (5’@)))
9
= O((6:0;)"7 p™"(5 + p8)) = o(e?)
and finally

n—2
bibj(6:6;) 2 /Qi an UL o(H (&, &5) — H(0iy + &, €5))
n—2 1 1

:bib-(éié')T/ P O(— e )

o L NG — g (i + & — &2

= 00j00)"7 [, UTo0 (16— &I 15w + (& - &) (6))

%
= o(e?).
The proof of equation (4.2) follows from equations (4.10) and (4.11).
STEP 2: Expansion of the term / B(z)|V§ P
Q vy
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We set r1 > 0 is given by rq := %min{dist(&,@(l) :1=1,...,k}. Note that r; = 7;, for some
io € {1,...,k}. We define the sets B; := B(&,r) fori = 1,...,k —1 and By, := Q \ U'-!'B;.
Hence

k
p+1 _ Vs p+1.
S i =
On each B; we get
Vs p+1 Ajh. ) _1)ip. |p+1
p_|_1/ Bz tV p+1/ B@)|(-1) JbJPU]+Z( 1)%b; PU|
i#j
= frl/ 5($)|bjPUj|pH+/ B(x)[b; PU; P ((—= 1) b, PUL) (S (—1) b PU;)
PR b i3

+ 0(/ PUP'PU})
B

= C1j+Cyj+ 0(62).

Similar computations to the ones that we made in step 1 lead us to

(4.12)
1 pott n-2
Ci =1 /Bj B(z)|b PU, P! = pﬁrl/Bj Bla)|U; — 6,2 H(x, &)+ (x, )P
b]?"rl -z
=T /Bj Bla)urtt — bt /Bj B(x)UPS, > H(w, &) + 0T /Bj B(x) UM (, &)
n—2 2
+O</Bj Uf_1(5j2H($,€j) +H(w,§j)> )
bp—l—l

ol 5, B0y + &)U Upet — ot /ngj B85y + &)UT o672 H (359 + &5,&;)
+O(am)R(d, t) + o(€?)

A 5n 52 0
=~ (BE)m + Rt d)) - W B(&5)8] T H (€, €5) (e + ?J?R(t’ d)) + O(e7=2)R(d, ) + o(€”)

p+1
b2 n A\ n—2 n
— S+ R ) — e (£) T BE) +OETTIRAY + ofe)
* d; n2
O pi LNV ) n(t — e (3) 86

2

+O(e72)R(d, ) + pp

- 171F(§*7 vi) + o(€%).
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Also

<zJ:/’B@M@P@w*«—nM@P@xgj—UMmpm)
B; i#j

- S [ (-5

=S DML [ B@UEPU

P
H(z,&) + H(x,§j>) PU;

(4.13)

Ai( _1\ipPh. T p—1 : nTﬂ s s
SOCUE i B PU (5,7 1 6)+ 1)

4+ O(c72)R(d, t) + o(€?)

because
n—2 n—2

bﬁbi/Bﬂ(fC)UfPUi = bjbi(0:6;) 2 G(&,&) (2 +o(1)) + bibjd; A_gi UT o11(diy + &, &)
j =

n—2 n-—2

d;? d;? tit;

R O +0(e72)R(d, 1) + of€?)
i J
and
, per pui(ons T e ) 0 ))

62
anH (B +6.6)+0( %)

n—2
(07 + 10y + & — &l») =

_ n—2 —
= )T [, B+ UL

%j

= o(€?).

The proof of (4.3) follows from equations (4.12) and (4.13).

STEP 3: Expansion of the term / B()|VE ¢ P log(VE ¢ )
Q Y Yy

We continue with the estimation of equation (4.4), to do this we write

€
p+1

9
Jy PNl (Vi) = 255 [ AV (Vi)
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Working on the set B, we have

p+1

p+1

p—i—l

. I3
Cop+1

f, B@Vianl oV

Zb PU; [P log(D " b:PU; + b; PU;)

i#j

> iz 0iPU;
b, P z‘erll b.PU: [ 1 LeiFy e T
/Bjﬁ<x>\; i og<j UJ< + S

i#j

. bi PU;
()| > biPU; + b PU; [P <log(b PU;) + log <1 + Zﬁ))

b; PU;

> iz 0iPU;

/Bj B(x) ((p +1) ) bPU; (0;PU;)" + (bjPUj)pH) <log(bjPUj) MW=

i

b PU;
) pf]_ ) ) Z’L;ﬁ] (2 7
( / (S b:PU)? (b, PU;) (log(bjPU]) + S ) )

Bj izj

= Zvj+ Zaj+ Zsj+ Zaj + o(€)

where

Zy; = p+ : )(b; PU;)P ™ 1og(b; PU;)
Z )(b; P b; P
27 p+ 1 / @) PU;) (; U)
1#]
g
Z3,g = 1 Z(p + 1) / ,3($)bZPU1 (bjPUj)p log(bjPUj)
p iZ B;j

Zyj = p—l—l/ﬁ )b; PU; (b; PU;) (ZbPU)

p+1

i#] ]

Using arguments similar to those given in Step 1 we get

(4.14)

On the other hand

21,5

€
p+1
€

p+1

7j.

P log (bj(SJ
= WI,J + Wo

Here, using (4.12), we obtain
——log <b 5 )bp“/ B(x)|PU;|PH!

(4.15)

W=

= (log (b;) + log(c~ %) — =

p+1
€

p+1

€
p+1

n

n —

7= 0(e?) for 1 = 2,3,4.

/ B(x)(b; PU;)P ™ log (b; PU;)

/ﬂ )(b; PU;)P*log(b;5, 2 6,7 PU;)

n—2
Tz PU; P + L/ PUP  log(8.2 PU;
)/Bj B(x)|PU;| Py B(x)PUJ™ log(é; 5)

1

“log(d) () +0())
2 B(.) log(d >+—ﬁ<f*> 1log(B(€4)7)

% B&Imlog(e) +O(e),

)

15
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and, by (4.8) and (4.9), we get

e n—2
%:p+@“/‘m@mﬁ“bg@2pw)
_p—i1 §>+1/ Bz PU”“log(a 7 U)

(1.16) +ﬁ§“ , B@PU 5T H &) + 1, €7)

ae [ Ut og(U10) + o)

B(&.)" [ Ubs 108(Ura) + o)

Therefore, by equations (4.14), (4.15) and (4.16), we obtain

)|V eslP log(Vies)

p+1
_ e n—2
__p—l-l( 2

e n—1
_p+1( 2

)B(E) M Io8(dh) + - B(E) 7 log(5(€)%)

)86 log(e) + = BE) s + 0(<),

where v3 := [, U7 ’51 log(Ui ). This concludes the proof of the lemma.

Proof of Lemma 3.1. A straightforward computations show that
Ze(d,t,v) = J(Viey +Patv)
= 5 | 9Via + il = s [ @V + 0
= J(Vitv) +¢s(d;t,v),

where

Y3(d, t,v) : (d,t,v) + Az(d, t,v)

and

1 _ _ _
(@) =~ | B (Vi 0l Vil = 012Vl 0i0)

Ax(d v) = = | AV +B@)Vienl v
Since 3 < n < 6, Lemma 2.1 shows that
[ 1963 = O tog(e)?).

and
41(d,6,9) = 0|63 e P2 ) = O log(e)?).
Moreover, using Hoélder and Sobolev inequalities we get

p—e

gyl = O(e? log(e)?),

n+2

Ax(d, t,v)] < 1]A<V§,t,v> 1 B(a)

because, as in the proof of Proposition 2 in [1(], we have that
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O(E| loge|+ 7+ (2)4 logg(f)) for n==~6
1AV ) + B@) Vi "l 20 =
(9(5| loge|+ 7+ (f)”_2> for n=3,4 and 5.
Therefore, we have that
O<62]10g6\§> for n==~6

Y3(d,t,v) =
O<52|10g5]2) for n=3 4 and 5.

Moreover, using equation (2.10), we can prove that
|V(d,t)1/)3(d, ta V)’ = O(w?)(da ta V))

The next step is to expand Jg(Vit’V) in terms of the parameters (d,t,v). An application of
the Mean Value Theorem shows that

€ 1 € 1 € —&
FViuw) = 5 | IWVael = = [ 8@Vie

— 1 € 2_1/ € p+1_;/ € p+1
= 5 Vil g [ BVE T o | AV
£
o [ B@Va e P og(Vi )+ O(E?).
(p+1) Ja

The proof is completed by applying Lemma 4.1.

5. BOUNDARY ESTIMATES OF THE GREEN FUNCTION.

In this section we establish some technical estimates we used in the previous part. Recall that
we will denote by G(xz,y) the Green’s function of the Laplace operator in € with zero Dirichlet
boundary condition and H (z,y) is its regular part, i.e.

1

wn(n —2)|z —y["=2

(5.1) G(z,y) = H(z,y),

where wy, is the volume of the unit sphere in R".
Now, for rg > 0 we denote by
Q= {& € Q: dist(&,090) < 1o}

If we will fix a ro small enough then for every & € (O, there exists a unique £ € 9 such that
& = &) + mimi(&Y) where dist(&;,00Q) = |& — &9| := 7. For & € Q,,, we will shall write

& =€) — mn(€))

thus & is the reflection of & on 9.
The following result can be consulted, for instance, in Lemma A in [1].

Lemma 5.1. Let & € Q,, and & € Q then, we have that

5.2 H(EY 0,6)= =————+0 <~ﬁ>
(5.2) (&1 +7mn(é7), &2) & — &2 + &

_ 52’n—2

where ¢ is a positive constant.
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Let us fix € := €%+ 7n(€%) € Q,, close to the boundary. Consider the function II(-, &) : Q — R
defined by

M(x,€) := PUs¢(x) — Use(x) +6°7 H(x,£).

Using the maximum principle is easy to see that

n+2
2

sup [II(x,&)| = O .

sup 11z, €)| = O(“—-)
In order to prove our main results we need more information about the function II(-,§). The

rest of this section is devoted to give a proof of the following asymptotic expansion for the

function II(+, §) as d(&) — 0.

Lemma 5.2. For every a € (0,1) we have that

n— %Hk d
(5 5 jg: agCy, en— 242k (Wﬁlﬁ( ig)

k=1

)+ e CEDn(e) + o)

for every & close to the boundary 0. Here k(€°) is the mean curvature of Q0 at the point £°,
—n+2

= () = AR 1), (B2 1), and
di§), . 24§ dy'
71”“(?) T enwy /Rnfl |(y’, A&)y|2n—2+2k
di€), _  (n—2+2k)d(©)? dy’
72”6(?) N 2nwy, /]Rn H(y, d )’2n+2k

In order to prove the Lemma above, we need to introduce some notation. First notice that
the function II(z, ) satisfies the problem

—AII(z,8) =0 inzeQ,

n—24+4k

0
Z aock. g2 on x € 01,

—n+2—2k
where, as before, ¢ ; is the binomial coefficient ( 2 ).

In order to simplify the computations, for every k € N, we introduce the function Ij(-,€) :
Q) — R to be the solution of the problem:

—ApIp(z,6) =0 inx €9,
]k(w g) E;‘gﬁ#@;gy on z € 0.
The proof of Lemma 5.2 follows from

Lemma 5.3. For every & close to the boundary 0), we have the following expansion

(5:3) Ip(€,) = e 72 (71,14:(61(5)) + 672,k(d§))“(€0) + O(e”a)),

where o € (0,1), k(&%) is the mean curvature of Q at the point £°.

The proof of this lemma is similar to that of Lemma 4.4 in [9], we just give a sketch of the
argument here for the reader’s convenience: For z € R” we will write z = (2/,z,,) € R"™! x R.
Without loss of generality we may assume that ¢ = (0,&,), n(¢€Y) = —e, and

TeoO) = H := {(5’,gn) eER"I xR: ¢, > 0}.

Set ¢ > 0 such that
00N B.(0) = {(:L",acn) co(x)) = xn}
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where ¢ : Tr00S2 — R satisfies ¢(0) = 0 and V¢(0) = 0. Therefore
1
(x') = §(MCL'/,.%'/) +O0(|2'®) as |2'| — 0
where M := D?¢(0). As before Q. = Q/e. We will write ¢ := 1¢£ € Q. and

Ii(y,Q) i= " 22 I (ey, ).

This function satisfies that
—Ay I (y,¢) =0 iny e Q,
fg(y,c) = W OHgE@QE.

Next we analyze the behavior of the function I (y,Q) at y € 0Q. N Bc(0). A straightforward
computation shows

N 1
Ii(y,¢) =
0 = Toey)) = (0, G T
_ 1 _ 1
(/12 + Coley) — )22 (Y2 + G2 — 26(ey)in + (Ldley))2) 2
1 Loey)? - 2(ey)Cn\ 2
— 1 IS5 15
(!y'|2+<3>"‘22+2’“< T WG )
(<1¢<5 = 2o(e)cn)
B 1 0o <n+222k> c Yy e Y )on
=, G ZO j [CASE
1 dkCn(MY', Y o (GlY P+ (MY, y)?
p— O
7 G272 Sy Gy T E < (4, o) [+ )
here di := %

The last equation suggests us to consider the function ng(z,¢) : H — R which satisfies the
problem

—Aynp(2,{) =0 in z € H,
(5.4)
nk(zaC) - Sk(Z,C) on z € OH
where si(-,¢) : 0H — R is defied by

1 dkCn(leazl)
(27, Gu) P22 7 (2, Gu) 2R

The solution to problem (5.4) has the explicit form

Sk(zv C) =

22n,

o Sk(yvg)
m(z0) = o [ PLlaAw)

W,

2z / dy/
nwp, JrRr—1 |(y/’Cn)|n72+2k||(yI’0) - Z‘n

_2enGndl / (My',y")dy'
nwn  Jre-1 [(Y, G)|MHEI(Y', 0) — 2|

(5.5) -

We are going to use function ng(z, () to make an estimation of f,i(y, ¢) on 2.N BC/S(CO). To
do this we need to perform a change of variables. Let fig(:, () : Qe N B./.(0) — R defined by

1 (y, ¢) := (T (y), )
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where T : Q. N B,/ (¢°) — H is the function

T yn) == Y, yn — éqb(éy’))-

The following result estimates the difference between the functions I k(+,¢) and ng(-,¢) on the
set Q. N B,/ (¢Y).

Lemma 5.4. For every a € (0,1) we have that

In(y.Q) = fin(y. ¢) + O(e'**)
uniformly on y € Q. N BC/E(CO).

Proof. The proof is similar to that of Lemma 4.4 in [9]. O

Finally, the proof of Lemma 5.3 follows from the previous lemma, equation (5.5) and the
following computations

e E) = Ti(¢Q)
= (¢, Q) + O

_ K dy
nwn Jro-1 (Y, Ga) P22 (y',0) — (0, )™

2dk<2/ (My',y)dy' 1+
+ £ n + O & @
nion Jaes [ GO 0) — (0.6 O )
2(n dy’ 2dy,C2 / (My',y)dy' 1
— n ’ o) +a
neon /Rnluy GO T e Jenn [ G T OET)
_ % / dy’ mcﬁ"zl | yidy
T nwy, Jre—t |(y’,Cn)|2"‘2+2k Wn, Y g1 |(y, Go) 2R
+ O(EHO‘)
d(¢ o
= 1) 4 e M) 1+ 0
because
/ (My',y)dy' Z / Mijyiy;dy’
re—1 |(y, Go) |2 H2H Re—1 (Y, Go) [P H2R

i,j=1

— Z/ zzy@dy
Rn—1 ’ y C |2n+2k

/R" 1 ’ y C ’2n+2k

Here M;; are the entries of the matrix M := D2¢(
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