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EXISTENCE AND UNIQUENESS OF LARGE SOLUTIONS

FOR A CLASS OF NON UNIFORMLY ELLIPTIC

SEMILINEAR EQUATIONS.

ALEXANDER QUAAS AND ERWIN TOPP

Abstract. In this paper we study existence, uniqueness and asymp-
totic behavior of large solutions of second-order degenerate elliptic semi-
linear problems in non divergence form. The main particularity of the
problem is the interior uniform ellipticity of the equation which degen-
erates on the boundary, involving an effect on the boundary blow up
profile of the solution.

1. Introduction.

Let Ω ⊂ RN be a bounded domain with C2 boundary. This note is
concerned with the problem

(1.1) −Tr(a(x)D2u(x)) + u(x)p = 0, x ∈ Ω,

where p > 1 and a : Ω̄ → RN×N is continuous. The main feature of the
problem is the non-uniform ellipticity of the second-order operator in Ω̄.
The precise assumptions on the problem will be made clear later.

We are interested is the study of large solutions associated to (1.1),
namely, solutions to this equation (say, classical) satisfying the blow-up
boundary condition

(1.2) u(x)→ +∞, x→ ∂Ω, x ∈ Ω.

At the late fifties, Keller [14] and independently Osserman [21] addressed
the question of large solutions for elliptic semilinear equations with the form

(1.3) −∆u+ f(u) = 0 in Ω,

obtaining fundamental information for this problem in the case the non-
linearity f is a positive function satisfying the so-called Keller-Osserman
condition ∫ +∞

1

ds√
F (s)

< +∞, where F (s) =

∫ s

0
f(t)dt,
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2 ALEXANDER QUAAS AND ERWIN TOPP

extending the results of Bieberbach [2] for large solutions for equations as-
sociated to exponential nonlinearities. In particular, when f(t) = tp, the
above condition is verified when p > 1 and for this reason, in what follows
we mainly refer to this power-type nonlinearity.

After these seminal works of Keller and Osserman, the study of large
solutions for semilinear elliptic problems has been widely developed in dif-
ferent frameworks until these days. Concerning (1.3), existence, uniqueness
and asymptotic behavior near the boundary can be found in [18, 1, 19, 15]
among many others. The effect of the second-order diffusive operator (the
Laplacian) and the reactive term (the nonlinearity) over functions defined
through negative powers of the distance function allow to construct blow-
up barriers, and a subsequent systematical use of the comparison principle
leads to the well-posedness of the problem. The asymptotic behavior at the
boundary of the solution is a byproduct of the built barriers, which in the
case of (1.3) explode at the rate dist(x, ∂Ω)−2/(p−1). The mentioned strat-
egy to address the problem is typically quoted as the method of sub and
supersolutions.

Further interesting results such as radiality of large solutions [22] or do-
main influence of the blow up [7] are also available. Besides, it is worth to
mention the deep connection of the study of large solutions with stochastic
superprocesses like the so-called Brownian snake, see [8, 17] and references
therein.

This work is greatly motivated by the study of large solutions for equa-
tions like (1.1) in the uniformly elliptic setting (that is, when a is definite
positive on Ω̄) by Veron [25]. The author proves existence and uniqueness,

together with the Laplacian-type blow-up profile dist(x, ∂Ω)−2/(p−1) near
the boundary. This asymptotic behavior is recovered from the well-known
behavior of −∆u + up = 0 in a half-space after a nice scaling argument,
feasible by the uniform ellipticity of the operator.

A second source of motivation comes from the study of elliptic problems
with x-dependent nonlinearity, see [20, 4, 5, 11, 16] and references therein.
An interesting model problem is the equation

(1.4) −∆u(x) + b(x)u(x)p = 0, x ∈ Ω.

where b ∈ C(Ω) is a positive function which explodes at the boundary. This
type of problems can be regarded as a particular case of our problem (1.1) in
the sense of the degenerate ellipticity of the second-order term. For instance,
problem (1.4) can be re-written (in the context of a typical model) as

−d(x)µ∆u(x) + u(x)p = 0 x ∈ Ω,

where µ > 0 and d is a function that agrees dist(x, ∂Ω) near the boundary
and is uniformly positive inside Ω. In [5] it is proven that the existence of
large solutions necessarily requires that µ ∈ (0, 2) and the blow-up profile

of the solution is d(x)−(2−µ)/(p−1). We remark that the results for this type
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of problems mainly follow the method of sub and supersolutions with acute
modifications of the arguments presented in the x-independent case, and
this is possible basically because of the subtle interaction among the x-
dependency of the problem and the second-order term.

By the above discussion, it is natural to address the elemental questions
on large solutions to elliptic problems in which the second-order term shows
degenerate ellipticity at one hand, and a more delicate dependency on the
state variable on the other. Besides the fundamental result about the well-
posedness of the problem, we are also interested in explore how the degen-
eracy of the operator affects the power profile of the solution.

The basic conditions over (1.1) are listed next.

(A0) The matrix a is uniformly elliptic in each compact set Ω′ ⊂⊂ Ω, and it
can be decomposed as a = σσT on Ω̄, where σ : Ω̄→ RN×N is continuous.

(A1) Normal degeneracy at the boundary: For each x ∈ ∂Ω

σ(x)TDd(x) = 0.

In the discussion of the above assumptions, we start remarking that we
follow the method of sub and supersolutions to get our results and therefore
comparison principle is the key tool. In this direction, the interior uniform
ellipticity and the matrix decomposition property in (A0) have close rela-
tion with the version of the comparison principle we use, and also with the
type of result we have in mind. The matrix decomposition is classical in the
context of viscosity solutions, particularly in what respects to the viscosity
comparison principle, see [6]. Being applicable to very degenerate elliptic
problems, this version of comparison principle has certain restrictions on
the continuity of a (it must be at least 1/2-Hölder, see [13]). Of course this
implies a restriction on σ, the square root of a, and as a consequence it also
restricts the “speed” in which the operator degenerates on the boundary, de-
generacy imposed by (A1). Note that this is actually a “normal” degeneracy
because Dd(x) agrees the inward unit normal to the booundary at x ∈ ∂Ω.
Thus, the interior uniform ellipticity in (A0) allows us to weaken the regu-
larity requirements on a since the application of elliptic regularity results to
locally bounded solutions of (1.1) permits to compare them classically with
appropriate sub and supersolutions (see Proposition 2.2 below).

The main result of this paper is the following

Theorem 1.1. Let Ω ⊂ RN be a bounded domain with C2 boundary, p > 1
and assume (A0),(A1) hold. Then, there exists a unique solution ū ∈ C2(Ω)
to problem (1.1)-(1.2) in each of the following two cases:

(i) Fast Degeneracy in Strictly Convex Sets: The set Ω is strictly
convex and the following two assumptions hold:
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Fast Normal Degeneracy: There exist L > 0, and 1/2 ≤ θ ≤ 1 such that,
for each x ∈ Ω near the boundary

(1.5) |σT (x)Dd(x)| ≤ Ldθ(x).

Tangential Nondegeneracy: There exists λ > 0 such that for each x ∈ ∂Ω
there exists j ∈ {1, , N}
(1.6) |σj(x)| ≥ λ,
where σj(x) denotes the j-th column of σ(x).

(ii) Controlled Slow Degeneracy in General Domains: There exist
L̄ ≥ L > 0 and 0 < θ < 1/2 such that, for each x ∈ Ω near the boundary

(1.7) Ld(x)θ ≤ |σ(x)TDd(x)| ≤ L̄d(x)θ.

Moreover, in both cases (i), (ii), there exists 0 < c1 ≤ C1 such that

c1d
−γ(x) ≤ ū(x) ≤ C1d

−γ(x),

for all x near the boundary, where γ > 0 is defined as

(1.8) γ =

{
1/(p− 1) in case (i)
(2− 2θ)/(p− 1) in case (ii).

Concerning the case (i) in the above theorem, the convexity of Ω and the
tangential nondegeneracy condition (1.6) seem to be a “boundary hitting”
condition for the underlying stochastic process

dXt =
√

2σ(Xt)
TdWt, t > 0; X0 = x,

where Wt is the standard Brownian motion in RN and for which our second-
order operator is the infinitesimal generator (see [24]). Roughly speaking,
the process (Xt) just moves tangentially to ∂Ω near the boundary by (A1),
and the convexity and (1.6) allow the process to hit the boundary in finite
time. In terms of the computations, the fast decay assumption (1.5) deter-
mines a leading effect of the curvature of the boundary on the second-order
operator when we evaluate it on distance-type barriers near the boundary.
This can be translated as a “first-order” effect of the operator and a balance
of powers between the differential operator and the nonlinearity drives us
to the above blow-up profile. Finally, notice that (1.5) holds for σ Hölder
continuous with Hölder exponent θ.

On the other hand, the slow decay assumption (1.7) in case (ii) leads to
an actual “second-order” effect of the differential operator and the accuracy
of its decay allows us to get the result, which is consistent with the results
obtained in [5]. We would like to remark that using the same arguments
presented below, it is possible to consider θ = 1/2 in case (ii), provided L
in (1.7) is large enough in terms of the curvature of ∂Ω and the L∞ bounds
of a.

https://www.researchgate.net/publication/239666097_Levy_Processes_and_Infinitely_Divisible_Distributions?el=1_x_8&enrichId=rgreq-b155c42479472f9c10dab221854bd217-XXX&enrichSource=Y292ZXJQYWdlOzI3NDY5NjkxNDtBUzoyMTU5ODI5MTczMjg4OTZAMTQyODUwNTc0ODY4OQ==
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We finish mentioning that the continuity of the square root of a nonneg-
ative matrix-valued function is studied in [3], see also [9, 10]. In terms of
our notation, the authors prove that a can always be decomposed as in (A0)
and its square root is continuous too. Using this result and the arguments
showed below, if we assume that

(1.9) |σTDd| > 0 on ∂Ω

we are able to get existence, uniqueness and Laplacian-type asymptotic be-
havior to (1.1), extending the results given in [25]. Moreover, we can get the
same result always assuming (1.9) but allowing some boundary degeneracy
of the second-order operator in “non-normal” directions.

Basic Notation: For a set O ⊂ RN we denote dO the signed distance
function to ∂O which is positive in O and we simply write d in the case
O = Ω. For δ > 0 we denote

Ωδ = {x ∈ Ω : d(x) < δ}.

By the smoothness assumption over Ω, there exists δ0 > 0 such that
d ∈ C2(Ωδ0), see [12].

2. Existence

We start with some direct computations concerning powers of the distance
function. For γ 6= 0 and ε ≥ 0, we see that

D(d+ ε)γ(x) = γ(d(x) + ε)γ−1Dd(x),

D2(d+ ε)γ(x) = γ(d(x) + ε)γ−1
(

(γ − 1)(d(x) + ε)−1Dd(x)⊗Dd(x) +D2d(x)
)
,

for each x ∈ Ωδ0/2. Therefore, recalling a = σσT , for all x ∈ Ωδ0/2 and ε ≥ 0
small, we conclude that

Tr
(
a(x)D2(d+ ε)γ(x)

)
= γ(d(x) + ε)γ−1

(
(γ − 1)(d(x) + ε)−1|σT (x)Dd(x)|2 + Tr(a(x)D2d(x))

)
.

(2.1)

Now we provide some useful estimates concerning the terms arising in (2.1).
We start mentioning some facts related with the smoothness and strict con-
vexity assumptions over ∂Ω, this last assumption playing a key role in the
case (i) of Theorem 1.1.

Notice that for each x ∈ Ωδ0 , we can decompose D2d(x) as

D2d(x) = PDP T ,
where P = P (x) is a matrix whose column vectors form an orthonormal
basis of RN (and whose N -th column equals Dd(x)) and

D = D(x) = diag[−κ1/(1− κ1d), ...,−κN−1/(1− κN−1d), 0],
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with κj = κj(x), j = 1, ..., N − 1 are the principal curvatures of ∂Ω at the
point x (see [12]). By the smoothness of ∂Ω there exists κ̄ > 0 such that

(2.2) kj(x) ≤ κ̄ for all j = 1, ...N − 1, x ∈ Ωδ0 ,

meanwhile, when Ω is strictly convex, there exists κ > 0 such that

(2.3) κ ≤ kj(x) for all j = 1, ...N − 1, x ∈ Ωδ0 .

The role of the strict convexity assumption over the boundary is given in
the following

Lemma 2.1. Assume Ω is strictly convex and that a satisfies (A0) and (1.6).
Then, there exists a constant c > 0 and δ̄ > 0 such that

Tr(a(x)D2d(x)) ≤ −c, for all x ∈ Ωδ̄.

Proof: We start assuming δ̄ < δ0. By (A0) we can write

Tr(a(x)D2d(x)) =
N∑
j=1

〈D2d(x)σj(x), σj(x)〉,

where σj(x) ∈ RN denotes the j-th row of σ(x). Then, using the decompo-
sition of Dd we arrive at

Tr(a(x)D2d(x)) =
N∑
j=1

〈D(x)P T (x)σj(x), P T (x)σj(x)〉

and then, considering d(x) ≤ κ̄/2 we can write

Tr(a(x)D2d(x)) ≤ −2κ

N∑
j=1

|P T (x)σj(x)|2,

and by (1.6) we conclude that Tr(a(x)D2d(x)) ≤ −2κλ̄. �

Proposition 2.2. Assume hypotheses of case (i) or (ii) in Theorem 1.1
hold. Then, for each R > 1 there exists a unique solution uR ∈ C2(Ω)∩C(Ω̄)
to problem (1.1) satisfying the boundary condition u = R on ∂Ω.

Proof: For each h > 0 small, consider Ωh = Ω \ Ωh, which is bounded
and smooth. Then, by (A0) the matrix a is uniformly elliptic in Ωh and
using standard elliptic techniques we have the existence of a unique function
uh ∈ C2(Ωh) ∩ C(Ω̄h) solving the problem −Tr(aD2u) + up = 0 in Ωh, and
satisfying the boundary condition uh = R on ∂Ωh, see Lemma 3.3 of [25].
By comparison principle we see that 0 ≤ uh ≤ R on Ω̄h, for each h > 0
small.

Now, denote dh = dΩh which is smooth in (Ωh)δ0/2, uniformly in h small

enough. Consider C > 0, γ̃ ∈ (0, 1) to be fixed and denote ρ = (R/C)1/γ̃ .
Take C > 0 large enough in terms of R and δ0 to have ρ < δ0/4. Hence, the

function ψ = R− Cdγ̃h is smooth in (Ωh)ρ.

https://www.researchgate.net/publication/225219376_Semilinear_elliptic_equations_with_uniform_blow-up_on_the_boundary?el=1_x_8&enrichId=rgreq-b155c42479472f9c10dab221854bd217-XXX&enrichSource=Y292ZXJQYWdlOzI3NDY5NjkxNDtBUzoyMTU5ODI5MTczMjg4OTZAMTQyODUwNTc0ODY4OQ==
https://www.researchgate.net/publication/267655406_Elliptic_partial_differential_equations_of_second_order_Reprint_of_the_1998_ed?el=1_x_8&enrichId=rgreq-b155c42479472f9c10dab221854bd217-XXX&enrichSource=Y292ZXJQYWdlOzI3NDY5NjkxNDtBUzoyMTU5ODI5MTczMjg4OTZAMTQyODUwNTc0ODY4OQ==
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Notice that by the choice of ρ, ψ ≤ uh on ∂Ωh and in what follows we
prove that ψ is a subsolution to (1.1) in (Ωh)ρ. A similar computation
to (2.1) together with (A0) lead us to

− Tr(a(x)D2ψ(x))

= Cγ̃(γ̃ − 1)dh(x)γ̃−2|σT (x)Ddh(x)|2 + Cγ̃dh(x)γ̃−1Tr(a(x)D2dh(x)).

(2.4)

At this point we split the analysis. In case (i) it is easy to note that if Ω
is strictly convex, then for each h small Ωh is strictly convex too. Then, by
Lemma 2.1 we get that

−Tr(a(x)D2ψ(x)) ≤ −C c dh(x)γ̃−1

for all x ∈ (Ωh)ρ, for some c > 0 not depending on h. Thus, we can write

−Tr(aD2ψ) + ψp ≤ −C c dγ̃−1
h +RP ≤ 0 in (Ωh)ρ,

by taking C large in terms of R and the data.

In case (ii), we start noting that for all x ∈ Ωδ0 we have Dd(x) = Ddh(x).
In fact, denoting x̂ its unique projection to ∂Ω and xh its unique projection
to ∂Ωh, the above claim is equivalent to prove that x, x̂, xh belong to the
same line. Thus, denoting x∗ the unique point in the intersection of ∂Ωh

and the straight line joining x and x̂, by contradiction we assume x∗ 6= xh.
Notice that the projection of x∗ to ∂Ω must be x̂, and denoting x̂h the
unique projection of xh to ∂Ω, we see that x∗ 6= xh implies that x̂h 6= x̂.
Thus, we can write

d(x) = |x− x∗|+ |x∗ − x̂| > dh(x) + h ≥ |x− xh|+ |xh − x̂h| ≥ |x− x̂h|,

which contradicts the definition of d(x).

Hence, we use this and the assumptions in case (ii) to get

|σ(x)TDdh(x)| = |σ(x)TDd(x)| ≥ Cd(x)θ ≥ Cdh(x)θ,

and plugging this into (2.4) we have the existence of a constants c1, c2 > 0
not depending on h or R such that

−Tr(a(x)D2ψ(x)) ≤ −Cdh(x)γ̃+2θ−2(c1 − c2dh(x)1−2θ).

Then, taking ρ ≤ (c1/(2c2))1/(1−2θ) (this means C large in terms of the
data and R, but not on h), we get

−Tr(aD2ψ) + ψp ≤ −Cc1dh(x)γ̃+2θ−2/2 +Rp ≤ 0 in (Ωh)ρ,

where the last inequality holds by enlarging C in terms of R and the data
if it is necessary.

Therefore, in both cases (i) and (ii), using comparison principle we get
that the solution uh satisfies

(R− Cdh(x)γ̃)+ ≤ uh(x) ≤ R, x ∈ Ωh,
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where the constant C > 0 depends only on R and the data, but not on h.
Note the family {uh} is uniformly bounded in terms of h, by comparison
it is monotone decreasing in compact sets of Ω and since equation (1.1) is
locally uniformly elliptic in Ω, elliptic estimates provide us the compactness
to conclude the existence of uR ∈ C2(Ω) such that uh → uR in C2

loc(Ω). Of
course uR ≤ R in Ω. Now, for each x ∈ Ω close to the boundary, for each
h ≤ d(x)/2 we can write

uR(x) ≥ uh(x)− |uR(x)− uh(x)| ≥ R− Cdh(x)γ̃ − oh(1),

and by taking h → 0, we conclude uR(x) ≥ R − Cd(x)γ̃ . The proof is
finished. �

The following lemmas are the crucial in the existence proof.

Lemma 2.3. Let d ∈ C2(Ω̄) be a strictly positive function in Ω \ Ωδ0 that
coincides with d(·, ∂Ω) in Ωδ0. Let γ as in (1.8) and for K1,K2 > 0 consider
the function

Ψ+(x) = K1d
−γ(x) +K2

Then, there exists K1,K2 such that Ψ+ is a supersolution to (1.1) in Ω.

Proof: Recall δ̄ ∈ (0, δ0) in Lemma 2.1. For x ∈ Ω \ Ωδ̄ both cases can
be proven at the same time: by the strict positivity and smoothness of d in
Ω \ Ωδ̄, there exists a constant C = C(δ̄) > 0 such that

−Tr(a(x)D2Ψ+(x)) + Ψp
+(x) ≥ −K1C +Kp

2

and then we conclude that Ψ+ is a supersolution to (1.1) in Ω \Ωδ̄ provided
K2 is large in terms of C and K1. By the continuity of D2d and a on Ω̄ we
see that Tr(aD2d) is bounded below on Ω̄.

For x ∈ Ωδ̄, we split the analysis. In the case (i), using (2.1) and the fast
decay assumption, Lemma 2.1 together with the definition of γ in this case
lead to the existence of C, c > 0 just depending on the data such that

− Tr(a(x)D2Ψ+(x)) + Ψp
+(x)

≥−K1C
(
d(x)−γ−2+2θ + cd(x)−(γ+1)

)
+Kp

1d(x)−(γ+1),

and therefore, since θ ≥ 1/2 we can write

−Tr(a(x)D2Ψ+(x)) + Ψp
+(x) ≥ K1d

−(γ+1)(x)(−C +Kp−1
1 ).

Thus, taking K1 large just in terms of the data, we conclude Ψ+ is a
supersolution to (1.1).

For case (ii) we use (1.7) to find that there exists a constants C, c > 0
such that

− Tr(a(x)D2Ψ+(x)) + Ψp
+(x)

≥−K1C
(
d(x)−γ−2+2θ − cd(x)−(γ+1)

)
+Kp

1d(x)−(γ+1),
(2.5)
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Now, using that θ < 1/2 and the definition of γ in case (ii), we see that
Ψ+ is a supersolution to (1.1) taking K1 large just in terms of the data. �

Lemma 2.4. Let d ∈ C2(Ω̄) be a strictly positive function in Ω \ Ωδ0 that
coincides with d(·, ∂Ω) in Ωδ0. Let γ as in (1.8) and for K1,K2, ε > 0
consider the function

Ψ−(x) = K1(d(x) + ε)−γ −K2.

Then, there exist K1,K2, δ̄ > 0 such that Ψ− ≤ 0 on Ω ∩ ∂Ωδ̄ and it is a
subsolution to (1.1) in Ωδ̄, for each ε ∈ (0, δ̄/4).

Proof: We start considering δ̄ as in Lemma 2.1 (recall that δ̄ < δ0) and

consider K1,K2 > 0 satisfying the ratio (K1/K2)1/γ ≤ δ̄.
We start with the case (i). For x ∈ Ωδ̄, using (2.1) and the definition of

γ we can write

− Tr(a(x)D2Ψ−(x)) + Ψp
−(x)

≤−K1γ(γ + 1)(d(x) + ε)−(γ+2)|σT (x)Dd(x)|2

+ γ(d(x) + ε)−(γ+1)Tr(a(x)D2d(x)) +Kp
1 (d(x) + ε)−(γ+1).

(2.6)

Next, dropping the first term in the right-hand side of the above inequality
and applying Lemma 2.1 we have the existence of a constant c > 0 just
depending on the data such that

−Tr(a(x)D2Ψ−(x)) + Ψp
−(x) ≤ −K1(d(x) + ε)−(γ+1)(c−Kp−1

1 )

from which we conclude the result by taking K1 small in terms of c.

In case (ii), for x ∈ Ωδ̄ the same inequality (2.6) holds. This time we use
the slow decay assumption (1.7) and the boundedness of a and D2d on Ω̄ to
conclude the existence of two constant C, c > 0 just depending on the data
such that

− Tr(a(x)D2Ψ−(x)) + Ψp
−(x)

≤−K1c
(

(d(x) + ε)−γ−2+2θ − C(d(x) + ε)−(γ+1)
)

+Kp
1 (d(x) + ε)−(γ+1),

but since in this case θ < 1/2 and eventually taking δ̄ smaller, we arrive at

−Tr(a(x)D2Ψ−(x)) + Ψp
−(x) ≤ −K1(d(x) + ε)−(γ+1)(c/2−Kp−1

1 ),

from which we conclude the result taking K1 small. �

Proof of Theorem 1.1 - Existence: Let uR be the unique solution given
in Proposition 2.2. Using comparison principle we see that 0 ≤ uR ≤ R
and the sequence {uR} is nondecreasing in R. Moreover, properly using
comparison principle again, we conclude uR ≤ Ψ+ in Ω by Lemma 2.3 and
therefore the family {uR} is unformly bounded in L∞loc(Ω). Then, by the
uniform ellipticity of the second-order operator on compact sets of Ω given
by (A0) together with elliptic regularity estimates and its monotony, by a
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bootstrapping argument we conclude the compactness of {uR} in C2
loc(Ω).

This leads us to the existence of a classical solution u ∈ C2 to (1.1) such that
uR → u in C2

loc(Ω) as R→∞. Recalling the definition of Ψ− in Lemma 2.4,

setting εR = (R/K1)−1/γ and for each ε ≤ εR, by comparison principle we
get Ψ− ≤ uR ≤ u in Ωδ̄. Letting ε → 0 we get a lower bound of explosion
to u. In fact, the above analysis leads us to the existence of two constants
0 < c1 ≤ C1 such that

(2.7) c1d(x)−γ ≤ u(x) ≤ C1d(x)−γ ,

where γ satisfies (1.8). By construction, u is the minimal large solution
to (1.1). �

3. Uniqueness

The key ingredient in the uniqueness proof is the following

Lemma 3.1. Let γ be as in (1.8). There exists constants 0 < c1 ≤ C1 < +∞
such that, for each u solution to (1.1)-(1.2) we have

c1d(x)−γ ≤ u(x) ≤ C1d(x)−γ , for all x ∈ Ω.

Proof: Recalling that the solution ū found in Theorem 1.1 is the minimal
solution among all large solutions to (1.1), we can take c1 as in (2.7). Now
we deal with the upper bound.

Let δ̄ > 0 as in Lemmas 2.1 and 2.4, consider δ ∈ (0, δ̄/4) and define

Aδ = {x ∈ Ω : δ < d(x) < 3δ}.

Denote µ = 2/(p− 1) and consider the function

Ψ(x) = Ψδ(x) = kδ

(
(3δ − d(x))−µ + (d(x)− δ)−µ

)
,

where kδ = kδη, with η = 1/(p− 1) in case (i), η = 2θ/(p − 1) in case (ii),
and k > 0 a constant to be fixed later. Let x ∈ Aδ and note that a direct
computation leads us to

D2Ψ(x) =µkδ

[
(µ+ 1)

(
(d(x)− δ)−(µ+2) + (3δ − d(x))−(µ+2)

)
Dd(x)⊗Dd(x)

+
(

(3δ − d(x))−(µ+1) + (d(x)− δ)
)
D2d(x)

]
.

Using (A0), together with Lemma 2.1 in case (i), a similar computation
to (2.1) drives us to the existence of a constant C > 0 not depending on δ
such that

−Tr(a(x)D2Ψ(x)) ≥− Ckδ|σT (x)Dd(x)|2
(

(3δ − d(x))−(µ+2) + (d(x)− δ)−(µ+2)
)

− Ckδ(d(x)− δ)−(µ+1) − χCkδ(3δ − d(x))−(µ+1),
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where χ = 0 in case (i) and χ = 1 in case (ii). From here, using the fast/slow
decay assumptions (c.f. (1.5)/(1.7)) for each case, we obtain

−Tr(a(x)D2Ψ(x)) ≥− Ckδd(x)2θ
(

(3δ − d(x))−(µ+2) + (d(x)− δ)−(µ+2)
)

− Ckδ(d(x)− δ)−(µ+1) − χCkδ(3δ − d(x))−(µ+1),

(3.1)

for some constant C > 0 not depending on δ, and where θ ≥ 1/2 in case (i)
and θ < 1/2 in case (ii).

On the other hand, observing that there exists cp > 0 such that

(α+ β)p ≥ cp(αp + βp) for all α, β > 0,

by definition of γ we see that

Ψp(x) ≥ cpkpδ
(

(3δ − d(x))−(µ+2) + (d(x)− δ)−(µ+2)
)
.

Hence, using this and (3.1) we arrive at

− Tr(a(x)D2Ψ(x)) + Ψ(x)p

≥k(3δ − d(x))−(µ+2)
(
cpk

p−1δpη − Cδηd(x)2θ − χCδη(3δ − d(x))
)

+ k(d(x)− δ)−(µ+2)
(
cpk

p−1δpη − Cδηd(x)2θ − Cδη(d(x)− δ)
)
.

Thus, recalling that d(x) ∈ (δ, 3δ) and the definition of η for each case,
taking k large in terms of cp and C in the above inequality, we conclude that
Ψ is a blow-up supersolution to (1.1) in Aδ. Then, by comparison principle,
each solution u ∈ L∞loc(Ω) to (1.1) satisfies

u(z) ≤ Ψδ(z) for all z ∈ Aδ,
for each δ ∈ (0, δ̄/4).

Now, consider x ∈ Ω and denote δ = d(x)/2. Then, using the last in-
equality, for each large solution u ∈ L∞loc(Ω) to (1.1) we get that

u(x) ≤ 21+µkd(x)−γ ,

which concludes the proof. �

We need to introduce the following definition: let {Ωm}m be an exhausting
sequence of smooth subdomains of Ω, that is, Ωm ⊂⊂ Ωm+1 ⊂⊂ Ω for each
m ∈ N, and

⋃
m∈N Ωm = Ω. Let um be the minimal large solution to the

problem
−Tr(aD2u) + up = 0 in Ωm.

Then, ū = lim
m→∞

um is called the maximal solution to (1.1). By elliptic

regularity, the limit is taken in the C2
loc(Ω) sense and therefore ū ∈ C2(Ω).

Note that ū is actually a large solution and therefore the estimates given
in Lemma 3.1 applies to ū. Moreover, by construction of ū and comparison
principle, if v ∈ C2(Ω) is any large solution to (1.1) we have v ≤ ū in Ω.
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The following lemma is a simple adaptation of Theorem 0.2 in [19] to our
setting

Lemma 3.2. Assume hypotheses of Theorem 1.1 hold. Let ū be the maximal
solution to (1.1) in Ω and assume the existence of constants K > 1, δ > 0
just depending on the data such that

(3.2) 0 ≤ ū ≤ Ku in Ωδ,

for each large solution u to (1.1). Then, there exists at most one large
solution to (1.1).

Before giving the proof of the above lemma, next we provide its main
corollary which is the

Proof of Theorem 1.1 - Uniqueness: Let u be a large solution to (1.1)
and let ū be the maximal solution to (1.1). Since ū is also a large solution
to the equation, the estimates in Lemma 3.1 apply to u and ū, from which
we conclude that

ū(x) ≤ C1c
−1
1 u(x) x ∈ Ωδ,

for some δ > 0 just depending on the data. Defining K = C1c
−1
1 we can get

the uniqueness from Lemma 3.2. �

We finally provide the

Proof of Lemma 3.2: Let u be a large solution to (1.1) and assume that
u 6= ū. Denote A = {x ∈ Ω : ū(x) > u(x)} 6= ∅ and define

w = u− ū− u
2K

.

The maximality of ū implies w ≤ u in Ω, and in addition we see that

(3.3) w =
(2K + 1)u− ū

2K
≥ (K + 1)u

2K
in Ωδ.

Note that for each λ1 > 1, f : R → R convex and a, b > 0, denoting
λ2 = λ1 − 1 we see that

f(a) = f(λ−1
1 (λ1a− λ2b) + λ−1

1 λ2b) ≤ λ−1
1 f(λ1a− λ2b) + λ−1

1 λ2f(b).

Thus, we use this inequality with f(t) = tp, p > 1, λ1 = 2K+1
2K and

a = u(x), b = ū(x) for x ∈ Ω, to get

−Tr(a(x)D2w(x)) + wp(x) ≥ 0 for x ∈ Ω,

and conclude that w is a supersolution to (1.1).

On the other hand, consider 0 < θ < K+1
2K < 1 and define wθ = θu. Then

−Tr(aD2wθ) + wpθ = −θTr(aD2u) + θpup ≤ (θp − θ)up ≤ 0,

which means that wθ is a subsolution to (1.1). By (3.3) and the choice of
θ, we clearly see that wθ < w in an open neighborhood of ∂Ω and then,

https://www.researchgate.net/publication/225671255_Existence_and_uniqueness_results_for_large_solutions_of_general_nonlinear_elliptic_equations?el=1_x_8&enrichId=rgreq-b155c42479472f9c10dab221854bd217-XXX&enrichSource=Y292ZXJQYWdlOzI3NDY5NjkxNDtBUzoyMTU5ODI5MTczMjg4OTZAMTQyODUwNTc0ODY4OQ==
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by comparison principle, we conclude that wθ ≤ w in Ω. Thus, using a
similar procedure as in the proof of existence of Theorem 1.1, it is possible
to construct a solution u1 ∈ C2(Ω) to problem (1.1) such that wθ ≤ u1 ≤ w.
In particular, u1 is a large solution and therefore it satisfies (3.2).

Note that the inequality u1 ≤ w in Ω implies that

(3.4) ū− u1 ≥ (1 +
1

2K
)(ū− u) in Ω.

Performing the same analysis as above but replacing u by u1 we can get
a large solution u2 to equation (1.1), satisfying (3.2) and, as in (3.4) it also
satisfies

ū− u2 ≥ (1 +
1

2K
)(ū− u1) in Ω.

By an inductive argument, we can construct a sequence of large solutions
un to (1.1) such that

ū− un ≥ (1 +
1

2K
)(ū− un−1) in Ω,

and therefore

ū ≥ un + (1 +
1

2K
)n(ū− u) in Ω.

Since un ≥ 0 and there exists at least one point x ∈ Ω such that (ū −
u)(x) > 0, we arrive at a contradiction making n→∞. �
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[11] Garćıa-Melián, J. Nondegeneracy and Uniqueness for Boundary Blow-Up Elliptic
Problems J. Diff. Eq.,223 (2206) 208-227.

[12] Gilbarg, D. and Trudinger, N.S. Elliptic partial differential equations of second order,
Springer-Verlag, Berlin 2001.

[13] Ishii, H. and Lions, P.-L. Viscosity Solutions of Fully Nonlinear Second-Order Elliptic
Partial Differential Equations J. Diff. Eq. 83, 26-78 (1990).

[14] Keller, J.B. On Solutions of ∆u = f(u). Comm. Pure. Appl. Math, vol. 10, (1957),
503–510.

[15] Kim, S. A Note on Boundary Blow-Up Problem of ∆u = up IMA Prerpint No 18-20,
2002.
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