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Abstract In this article, we consider the nonlinear elliptic equation

|∇u|βM+
λ,�(D2u) + u p = 0 in R

N . (�)

Here,M+
λ,� denotes Pucci’s extremal operator with parameters� ≥ λ > 0 and−1 < β <

0. We prove the existence of a critical exponent p∗+ that determines the range of p > 1 for
which we have the existence or nonexistence of a positive radial solution to (�). In addition,
we describe the solution set in terms of the parameter p and find two new critical exponents
1 < p∗+ < p̃β for the equation (�), where the solution set sharply changes its qualitative
properties when the value of p exceeds these critical exponents.

Keywords Critical exponent · Singular extremal operator · Emden–Fowler transformation
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1 Introduction

The Lane–Emden–Fowler equation is one of the simplest nonlinear elliptic partial equations
(see [1,2])

�u + u p = 0 in R
N . (1.1)

Understanding this equation requires various important tools, such as the Emden–Fowler
transformation, the Pohozaev identity, energy integrals, moving plane techniques, the Kevin
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transform and the Harnack inequalities. All these tools can be used to prove various basic
results for Eq. (1.1) or for more general equations.

This equation has a solution set with a structure that strongly depends on the exponent
p. One of the main results for Eq. (1.1) is that the number p∗

N = N+2
N−2 is the the principal

critical exponent, that is:

• If 1 < p < p∗
N = N+2

N−2 , then there is no nontrivial positive solution to Eq. (1.1) (see the
result by Gidas and Spruck in [3] and also the paper Chen and Li [4]).

• If p = p∗
N , then Eq. (1.1) possesses exactly one positive solution, up to scaling and

translation. This solution additionally satisfies u(|x |)|x |N−2 → C as |x | → ∞ (see the
paper by Caffarelli, Gidas and Spruck [5]).

• If p > p∗
N , then Eq. (1.1) has a radial positive solutions that behave like C |x |−α near

infinity, where α = 2
p−1 and C > 0.

The number p∗
N is known as the critical Sobolev exponent, since the Sobolev conjugate of 2 is

2∗ := 2N/(N − 2) = p∗
N + 1. Recall that 2∗ appears for example in compact embedding. In

fact, ifU is a bounded open subset of RN and ∂U is C1 then H1(U ) is compactly embedded
in L p(U ) for 1 ≤ p < 2∗ (see for example Theorem 1 in Section 5.7 of [6]).

When 1 < p ≤ N
N−2 := ps , then a Liouville-type theorem or nonexistence result can be

determined for classical supersolution of (1.1); that is, for:

�u + u p ≤ 0 in R
N . (1.2)

This exponent is optimal in the sense that the solution of (1.2) exists if p > ps ; this number
is sometimes called the second critical exponent of (1.1). The results for the supersolution
are described by Gidas in [7].

This last result can be extended by replacing the Laplacian with a fully nonlinear elliptic
operator; for example, Pucci’s extremal operator defined as:

M+
λ,�(M) = �

∑
eı>0

eı + λ
∑

eı<0
eı ,

where e1, . . . , eN are the eigenvalues of M
(1.3)

(see, for example, [8] and [9] for a similar definition).
In [10], the authors Cutri and Leoni studied the following inequality

M+
λ,�(D2u) + u p ≤ 0, in R

N . (1.4)

They proved that for 1 < p ≤ p̃s = Ñ
Ñ−2

, Eq. (1.4) has no nontrivial positive viscosity

solution, where the dimension-like number Ñ is define by

Ñ = λ

�
(N − 1) + 1. (1.5)

For p > p̃s , they also presented a solution of the inequality, showing that their exponent is
optimal.

In [11], Birindelli and Demengel extended the aforementioned results to more general
inequality of the form:

|∇u|βM+
λ,�(D2u) + u p ≤ 0 in R

N , (1.6)

with β ∈ (−1,+∞). The authors derived the existence of a critical exponent p̃b =
1+(β+1)(Ñ−1)

Ñ−2
such that for 0 < p ≤ p̃b, there is no nontrivial positive viscosity solution for

(1.6).
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These results for the supersolution were extended to others different operators (see, for
example, [12,13], and [14] and the references therein).

The problem for equation

M+
λ,�(D2u) + u p = 0 in R

N , (1.7)

with� 	= λ ismore complex than the casewhen the differential operator is the Laplacian [i.e.,
When � = λ = 1, then (1.2) is (1.7)]. This is because the natural candidate for the critical
exponent, (Ñ + 2)/(Ñ − 2), is not the critical exponent for existence and nonexistence.

In fact, in [15], Felmer and the second author studied radially symmetric positive solution
of (1.7) and proved the existence of a critical exponent p∗ that corresponds to the critical
exponent p∗

N for theLaplacian,which separates the range in p for existence fromnonexistence
of solution to (1.7). They also proved that the critical exponent p∗ satisfies the bounds

max{ Ñ
Ñ−2

, p∗
N } < p∗ < Ñ+2

Ñ−2
. These results were generalized in [16]. Note that the result

for nonexistence of nonradially symmetric solution still remains unsolved.
The purpose of this article is to derive the critical exponents, in the case of radially

symmetric positive solutions, for a singular extremal operator. More precisely, we will study
positive solutions of the nonlinear elliptic equation

|∇u|βM+
λ,�(D2u) + u p = 0 in R

N , (1.8)

and extend the results of [15] for the case of β ∈ (−1, 0) and obtain critical exponents. In
particular, we examine the Sobolev-type exponent for (1.8).

Before we state our main theorem, we present some definitions:

Definition 1.1 Assume that u is a radial classical positive solution of equation (1.8) but in
R
N\{0}. Then, we have
• u is a fast decaying solution if there exists C > 0 such that

lim
r→∞ r Ñ−2u(r) = C.

• u is a pseudo-slow decaying solution if there exist constants 0 < C1 < C2 such that

C1 = lim inf
r→∞ rαu(r) < lim sup

r→∞
rαu(r) = C2,

where

α = β + 2

p − (β + 1)
. (1.9)

• u is a slow decaying solution if there exists cs > 0 such that

lim
r→∞ rαu(r) = cs .

• u is singular if

lim
r→0

u(r) = ∞

We state now our principal theorem.
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Theorem 1.1 Suppose Ñ > 2 and −1 < β < 0. Then, there exists a critical exponent p∗+
such that max{ p̃b, pβ} < p∗+ < p̃β, where:

p̃b = 1 + (β + 1)(Ñ − 1)

Ñ − 2
,

pβ = (β + 2)2 + (β + 1)2(N − 2)

(β + 1)(N − 2)
,

p̃β = (β + 2)2 + (β + 1)2(Ñ − 2)

(β + 1)(Ñ − 2)
,

such that:

1. If 1 < p < p∗+, then there is no nontrivial radial positive viscosity solution to (1.8).
2. If p = p∗+, then there is a unique, up to scaling, fast decaying radial viscosity solution

to (1.8).
3. If p∗+ < p ≤ p̃β , then there is a unique, up to scaling, pseudo-slow decaying radial

viscosity solution to (1.8).
4. If p̃β < p, then there is a unique, up to scaling, slow decaying radial viscosity solution

to (1.8).

Remark 1.1 1. Here, solution is C2 radial functions that satisfies Eq. (1.8) in the viscosity
sense and they also satisfy equation in R

N\{0} in the classical sense. For more details on the
definition of viscosity solution in this setting see [11].

The next theorem exhibits the complex structure of the singular solution set for some
range of p.

Theorem 1.2 We assume that Ñ > 2 and p∗+ < p < p̃β , where p∗+ is given in Theorem
1.1. Then, we have the following:

Equation (1.8) possesses at least three singular solutions ui , i = 1, 2, 3, such that u1(r) =
csr−α ,

c12 = lim inf
r→0,∞ rαu2(r) < lim sup

r→0,∞
rαu2(r) = c22,

lim
r→0

rαu3(r) = cs and c13 = lim inf
r→∞ rαu3(r) < lim sup

r→∞
rαu3(r) = c23,

for cs, c1i and c2i , i = 1, 2, 3, positive constants.
Moreover, if p = p̃β , there is a family of solutions uμ such that

c1,μ = lim inf
r→0,∞ rαuμ(r) < lim sup

r→0,∞
rαuμ(r) = c2,μ,

where c1,μ and c2,μ are monotonic continuous functions in μ ∈ [0, 1] and c1,μ → cs and
c2,μ → cs as μ → 1 with cs ∈ IR+, recall that cs is the constant of u1 .

The paper is organized as follows. In Sect. 2, we present some preliminary properties of the
radial solutions. In Sect. 3, we transform our problem into two systems of ordinary differential
equations. By using ideas from dynamical systems, we present qualitative properties of the
solutions. In the Sect. 4, we use the method introduced by Kolodner and Coffman (see [17]
and [18]). This method differentiates the solution with respect to the initial value. Here, we
differentiate the equation with respect to p. Then, we prove our main theorems.
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2 Preliminaries

We begin by considering the initial value problem

u′′|u′|β = M[− (N − 1)

r
|u′|β(m(u′)) − u p] in (0,+∞) (2.1)

u(0) = γ0, u′(0) = 0, (2.2)

where γ0 > 0 and

M(s) =
{ s

�
if s ≥ 0,

s
λ

if s < 0.
(2.3)

m(s) =
{

�s if s ≥ 0,
λs if s < 0.

(2.4)

We note that solutions of (2.1)–(2.2) are radial symmetric positive viscosity solutions of
(1.8) (for details, see Lemma 3.1 in [10] and [11] for the definition of viscosity solution in this
context). The existence of solution to (2.1)–(2.2) can be established using a direct fix point
argument; here, we use local existence for a simpler related problem that will give existence
for (2.1)–(2.2). Then, we use stable–unstable manifold for a related dynamical system that
gives uniqueness for (2.1)–(2.2), see next lemma and the beginning of next section.

Remark 2.1 Assume that u(r, p) is a solution of (2.1) with u(0) = 1 and u′(0) = 0, then by
scaling

uγ0(r, p) = γ0u(γ
1
α

0 r, p) is a solution for all γ0 > 0.

Lemma 2.1 There exists a solutions of

λ|u′|βu′′ + λ(N − 1)

r
|u′|βu′ + u p = 0 in (0, R) (2.5)

u(0) = γ0, u′(0) = 0 (2.6)

that is initially decreasing and concave. Moreover, u′′(0) = 0 and u is C2 near zero.

Proof The existence results can be established by a fix point argument as for example
in [19].

Define now v = |u′|βu′, then v(0) = 0 since β + 1 > 0 and v also satisfies the equation

λ
v′

β + 1
+ λ(N − 1)v

r
= −u p.

Then, taking the limit, we deduce that:

v′(0) = −γ
p
0

λ(1/(β + 1) + N − 1)
< 0.

Therefore, v is initially negative and decreasing, additionally since β ∈ (−1, 0) we find
u′′(0) = 0 and u is C2 near zero. ��

The next lemma provides some properties of a point r0 such that u′′(r0) = 0. Without
losing generality, we assume now and for the rest of the paper that λ = 1.

Lemma 2.2 Define H(r) = N−1
r |u′|βu′ + u p. If there exists r0 > 0 such that H(r0) = 0

and H ′(r0) = 0, then H ′′(r0) < 0. In other words H change sign with H ′ 	= 0.
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Proof If H(r0) = 0 and H ′(r0) = 0, H ′′(r0, p) < 0. In fact,

H ′′(r0) = 2(N − 1)|u′|βu′

r30
+ p(p − 1)u p−2(u′)2 = 1

(p − 1)

−u(r0)p

r20
< 0.

��
Note that this lemma is equivalent to u′′(r0) = 0 and u′′ changing sign implies u′′′(r0) 	= 0.
We classify the exponent p according to the behavior of the solution of the initial value

problem (2.1)–(2.2). We define:

• C = {p | p > 1, u(r, p, γ0) has a finite zero}.
• P = {p | p > 1, u(r, p, γ0) is positive and pseudo-slow decaying}.
• S = {p | p > 1, u(r, p, γ0) is positive and slow decaying}.
• F = {p | p > 1, u(r, p, γ0) is positive and fast decaying}.

Note that these sets do not depend on the particular value of γ0 > 0, by Remark 2.1.

3 Dynamical systems

In this section, we first use the following Emden–Fowler-type transformation introduced in
[20] for the p-Laplacian. Let u be a solution of the initial value problem (2.1)–(2.2). We
define

x(t) = u(et )eαt and y(t) = |u′|βu′(et )eγ t with γ = (α + 1)(β + 1),

and α is define in (1.9).
Because −1 < β < 0 and M , m are Lipschitz functions from equation (2.1) we find that

x, y satisfy

ẋ = αx + |y| −β
β+1 y and ẏ = δ̃y + g̃(x, y) (3.1)

for δ̃ = −(β + 1)[Ñ − 2 − α] and
g̃(x, y) = −δ̃y + (β + 1)[(1 + α)y + M(−(N − 1)m(y) − x p)],

which has vanishing Lipschitz constants, as given in Theorem 4.1 (on page 330 of [21]).
Therefore, because δ̃ = −(β +1)[Ñ −2−α] < 0 since p > p̃band α > 0, the existence and
uniqueness of the stable–unstable manifold of the origin O follow. In addition, by uniqueness
and Lemma 2.1, the solution of (2.5) and (2.6) is near zero the unique solution of (2.1)–(2.2).
So, in particular, y is negative near −∞ it remains negative, while x remains positive. Thus,
x, y satisfy the following:

• If y > −x p

N−1 , defining δ = −(β + 1)[N − 2 − α], we find that:
[
ẋ

ẏ

]
=

[
α 0
0 δ

][
x

y

]
+

[
|y| −β

β+1 y
−(β + 1)x p

]
. (3.2)

• If y ≤ −x p

N−1 we have:
[
ẋ

ẏ

]
=

[
α 0
0 δ̃

][
x

y

]
+

[
|y| −β

β+1 y
−(β + 1) x

p

�

]
. (3.3)
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Moreover, this system has a unique critical point P = (x(p), y(p)) formed by
f (x(p), y(p)) = 0, g(x(p), y(p)) = 0 and y(p) ≤ −x(p)p

N−1 , where we denote the system
(3.1) as ẋ = f (x, y) and ẏ = g(x, y).

Remark 3.1 Note that the unstable manifold of O , which we denote byWu(O), corresponds
to solutions of (2.1)–(2.2), with

lim
t→−∞ e−αt x(t) = γ0 = u(0).

Analyzing the stablemanifold, denoted byWs(O), we have that if (x(t), y(t)) ∈ Ws(O)∩
Wu(O) that is x(t), y(t)) homoclinic orbit, then u the associated solution satisfies

lim
t→∞ e−δ̃t y(t) = −C hence, lim

r→∞
|u′|βu′

r−(Ñ−1)(β+1)
= −C,

Using L’Hospital’s rule, we can conclude that

lim
r→∞ u(r)r (Ñ−2) = C̃ .

Thus, u is a fast decaying solution.

The phase plane in the fourth quadrant is divided into two regions by the curve

y = −x p

N − 1
. (3.4)

We denote by Q+ the regions above (3.4) and by Q− the regions below (3.4).
To continue, we recall the Bendixson–Dulac criterion or test (see, for example, Theorems

1 and 2 in Section 3.9 of [22], in the case of the C1 fields).

Theorem 3.1 Let ẋ = f (x, y) and ẏ = g(x, y) denote a dynamical system in the plane
with Lipschitz functions f and g. Suppose that there exists ρ, a Lipschitz function (Dulac
function), such that

G(x, y) := ∂ ρ f (x, y)

∂x
+ ∂ ρg(x, y)

∂y

has the same sign a.e. in D. Then, neither limit cycles nor homoclinic orbits exist in D.

Remark 3.2 Note that by Rademacher’s Theorem, G is well defined a.e..

Proof First, assume that (x, y) is a homoclinic orbit in D. Then, denoting by C the corre-
sponding closed curve and by n̂ the is the outward-pointing unit normal, we have

I =
∮

C
(ρ f (x, y), ρg(x, y)) · n̂ds = 0.

However, if � is the region surrounded by C , by the divergence theorem, we find that

I =
∫∫

�

GdA = 0. (3.5)

By our assumption, G has the same sign a.e. in � ⊂ D, indicating a contradiction.
The case of limit cycles is analogous, and this concludes the proof. ��
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Lemma 3.1 If α + δ and α + δ̃ have the same sign, then neither limit cycles nor homoclinic
orbits exist. This means in term of p that if p > p̃β > pβ or p̃β > pβ ≥ p neither limit
cycles nor homoclinic orbits exist for (3.2), (3.3).

Proof We applied the Bendixson–Dulac test in Q+:

G(x, y) := ∂ f (x, y)

∂x
+ ∂ g(x, y)

∂y
= α + δ,

and in Q−:
G(x, y) := ∂ f (x, y)

∂x
+ ∂ g(x, y)

∂y
= α + δ̃.

Therefore, we can apply the Bendixson–Dulac test in fourth quadrant; hence, the result if
p > p̃β > pβ or p̃β > pβ > p. The case α + δ = 0, that is, p = pβ < p̃β we still can
apply Bendixson–Dulac test since if limit cycles or homoclinic exist then the interior of the
orbit � must have positive measure in the set Q− where we have the strict sign for G and
we get a contradiction with (3.5) as in the above proof of the Bendixson–Dulac test. ��
Lemma 3.2 Let (x(t), y(t)) be a trajectory of (3.2) in Wu(O); then,

y ≤ − (β + 1)x p

1 + (N − 1)(β + 1)
.

Proof As above, a solution to the initial value problem (2.1), (2.2) with u′′ < 0, corresponds
to a solution (x(t), y(t)) of (3.2) in Wu(O). Therefore, u satisfies

{|u′|βu′r (N−1)β+1}′ = −(β + 1)u pr (N−1)(β+1) in (0, r0),

where r0 is the first point such that u′′(r0) = 0. Integrating by parts and using u′ ≤ 0, we
obtain

|u′|βu′ ≤ − (β + 1)u pr

1 + (N − 1)(β + 1)
, for r ≤ r0.

This in terms of the dynamic system is the desired inequality. ��
Proposition 3.1 We have:

1. If p > p̃β , then p ∈ S.
2. If p ≤ max{ p̃b, pβ}, then p ∈ C.
Proof From Lemma 3.2, we can prove that the solution (x(t), y(t)) in Wu(O) is bounded
because a curve of the form y ≤ −Cx p crosses the curve f (x, y) = 0 only at one point.
Therefore, x ′(t) < 0 for large t , and thus, the solution is bounded.

Case 1 If p > p̃β > pβ , then α + δ < 0 and α + δ̃ < 0 thus using Lemma 3.1 we have
that (x(t), y(t)) is not a homoclinic orbit, and it does not converge to a limit cycle. Assume
now that x vanishes for some t0. We now denote as D the closed curve containing the origin
composed of part of the stable manifold Ws(O) emanating from the origin to the second
crossing with x ′ = f (x, y) = 0 and we close the curve with the curve f (x, y) = 0, all this
if the second crossing point exists. Because g(x, y) > 0 if f (x, y) = 0, we find

I =
∮

D
( f (x, y), g(x, y)) · n̂ds > 0.

Now, with α + δ < 0 and α + δ̃ < 0, we obtain a contradiction with the divergence theorem.
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If the stable manifold Ws(O) has only one crossing point with x ′ = f (x, y) = 0, then
this point must be P , and the same argument can be apply. Therefore, x does not vanish and
does not decay fast or pseudo-slow. So, (x(t), y(t)) has to approach our critical point P as a
consequence of Poincare–Bendixson’s Theorem. Therefore, p ∈ S.
Case 2 If p ≤ p̃b, then there is no solution, from the results of [11]. If p ≤ pβ , then α+δ ≤ 0
and α + δ̃ < 0 using Lemma 3.1 we find that (x(t), y(t)) is not a homoclinic orbit, and it
does not converge to a limit cycle. If we assume by contradiction that x does not vanish, then
Wu(O) will be connected with P . Then, we can use similar argument as above replacing
Ws(O) by Wu(O) and obtain a contradiction. Therefore, p ∈ C. ��

Now, we transform the problem using the classical Emden–Fowler transformation and
find that if H̃(x, x ′) := (N − 1)(x ′ − αx) + x p

|x ′−αx |β ≤ 0, we get

ẋ = 
 =: h(x, 
)


̇ = −ã
 + b̃x − x p

�|
 − αx |β =: k(x, 
),
(3.6)

with ã = (Ñ − 2 − 2α) b̃ = α(Ñ − 2 − α).

We note that if p > p̃b, then this system has a unique critical point that we call T =
(z(p), 0), characterized by k(z(p), 0) = 0.

Lemma 3.3 If p̃b < p < p̃β , then p is not an element of the set S because the point T is
unstable. If p = p̃β , then the system is a center around T , that is, all trajectories close to T
are periodic.

Proof We will use the Bendixson–Dulac test with the Dulac function ρ = |
 − αx |β . A
direct computation gives

G(x, 
) := ∂(ρ h(x, 
))

∂x
+ ∂(ρ k(x, 
))

∂

= (α + δ̃)|
 − αx |β .

Using α + δ̃ > 0, because p < p̃β , we can prove that the point T is unstable applying
the same argument as in proof of Theorem 6.3 in [16], but replacing G in the divergence
theorem.

We now assume that p = p̃β . We take the orbit of (3.6) with the initial point (x0, 
0) that
satisfies 
0 = (α − 1/p)x0) and H̃(x0, ρ0) = 0. We claim that this orbit is periodic.

In fact, if the orbit crosses the curve H̃(x, 
) = 0 again, we define the closed curve D
composed by this orbit and closed with part of the curve H̃ denote by C. Notice that on C we
have 
 > (α − 1/p)x , by the definition of (x0, 
0). We will prove that

(h(x, 
), k(x, 
)) · n̂ > 0 in C, (3.7)

where n denotes the outward unite pointing normal to C. If we compute condition (3.7) in
terms of z := 


x we find

w(z) := pz2 − [β + 2 + (1 + 2α)(β + 1)]z + (β + 1)α(α + 1) < 0,

and therefore get z ∈ [α − 1/p, α]. From here, we can deduce condition (3.7) holds since

 > (α − 1/p)x on C.
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We now define � as the region bounded by the curve D. Then,

I =
∫∫

�

GdA = 0.

From the divergence theorem and (3.7), we find that I is positive, which is a contradiction.
If the solution does not cross H̃(x, ρ) = 0 and is not periodic, then there are two points

in the trajectory such that ρ = 0. We now define a close curve composed by the orbit and
closed with part of ρ = 0. Using the divergence theorem again, we obtain a contradiction.
Therefore, the claim follows.

Finally, using the last argument all orbits inside the periodic orbit find above are also
periodic; these mean that the system is center around T . ��

4 Sturm–Liouville identities and Coffman and Kolodner method

In this section, we study the solution near a fast decaying solution. We vary p in order to
classify the solution. First, we differentiate the solution of (2.1)–(2.2) with respect to p as
in [15], keeping the initial condition fixed. We prove the following two propositions that are
crucial for the proof of our main results.

Proposition 4.1 If p∗ ∈ F, then for p < p∗ close to p∗, we have p ∈ C.

Proposition 4.2 If p∗ ∈ F, then for p > p∗ close to p∗, we have p ∈ S ∪ P .

For the proof of these propositions, we require some preliminary lemmas. Because γ0 is
kept fixed in our analysis, we do not explicitly mention it.

Let p∗ ∈ F and u(r, p∗) be a solution of (2.1)–(2.2). We note that by Proposition 3.1,

p∗ >
1+(β+1)(Ñ−1)

Ñ−2
= p̃b, and u changes its concavity only once because the solution

corresponds to homoclinic orbits in the dynamical system of the previous section. Thus,
there exists a unique point r0 = r0(p∗) such that u′′(r0) = 0.

Our first step is to study the differentiation of u with respect to p, for which we need the
following lemma:

Lemma 4.1 There exist δ > 0 and a Lipschitz continuous function r0 : [p∗−δ, p∗+δ] → IR
such that u′′(r0(p), p) = 0.

Proof For the proof, we will use a version of the implicit function theorem described by
Goursat, see [23] that does not require differentiability in one of the variables. We define, as
before, H(r, p) = N−1

r |u′|βu′ + u p with H ′(r0, p∗) 	= 0 by Lemma 2.2. Then, L p(r) =
r − H(r,p)

H ′(r0,p∗) is a continuous and a uniform contraction in a neighborhood of r0 to itself for
all p ∈ [p∗ − δ, p∗ + δ] and small δ > 0. By the Banach fixed point theorem, there exists
r0(p) such that H(r0(p), p) = −u′′(r0(p), p) = 0. In addition, the continuity of H implies
the continuity of r0(·) by the triangle inequality.

We take p = p∗ and h small; then,

0 = u′′ (r0(p + h), p) − u′′ (r0(p), p)
r0(p + h) − r0(p)

r0(p + h) − r0(p)

h

−u′′ (r0(p + h), p + h) − u′′ (r0(p + h), p)

h
.
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Note that the last term is bounded because from (2.1), since u′′ is Lipschitz when in the
variables when u′(r0). Thus

lim
h→0

u′′ (r0(p + h), p) − u′′ (r0(p), p)
r0(p + h) − r0(p)

= u′′′ (r0(p), p) 	= 0,

by Lemma 2.1. Therefore, we find that r0 is Lipschitz near p∗. ��
Proposition 4.3 We define ϕ(r, p) = ∂u(r,p)

∂p ; then, ϕ(0) = 0 and ϕ′(0) = 0, and ϕ(., p∗)
satisfies the following equations:

|u′|β
[
ϕ′′ + (N − 1)(β + 1)u′ + βru′′

ru′ ϕ′
]

= −u p ln u − pu p−1ϕ if r < r0 (4.1)

and

|u′|β
[
ϕ′′ + (Ñ − 1)(β + 1)u′ + βru′′

ru′ ϕ′
]

= − 1

�
u p ln u − pu p−1ϕ if r > r0. (4.2)

Proof Using Gronwall’s inequality, Arzela–Ascoli’s Theorem and Lebesgue’s Dominated
Convergence Theorem, the differentiability follows, using similar arguments as those used
for the example in [24] for r near zero, since Pucci’s operator is the Laplacian by the fact
that u′′(r, p) < 0 for small r .

Therefore, we have found the solution ϕ to (4.1) in (0, r1]with r1 < r0(p∗). This solution
can be continuously extended (using a local fixed point argument) to a solution of (4.1) and
(4.2) in all (0,+∞) by

(|u∗|β)
ϕ′ = −

∫ r

r1
ρu(s)

(
p∗u p∗−1φ + u p∗

log u
)

θu
+ (|u′|β)

ϕ′(r1).

Here, we use the notation u := u(p∗), Nu = (N−1)/θu , where θu(r) = 1 for r ≤ r0(p∗),
θu(r) = � for r > r0(p∗), and

ρu(r) = e−(β+1)
∫ r
r̄ e

Nu (s)−1
s ds .

We now define v := u(p∗ + h) and wh = (u − v)/h. Using the equations for u and v,
we find that

|u′|β
(

θuw
′′
h + (N − 1)w′

h

r

)
+ (|u′|β − |v′|β) (

θuv
′′ + (N − 1)v′

r

)
+ |v′|β)

+(θu − θv)|v′|βv′′ + u p − v p = 0.

Here, θv is analogous to θu , depending on the sign of v′′.
We now note that

|E(h)| := | 1
h

∫ r0(p∗)

r0(p∗+h)

ρu(s)(θu − θv)|v′|βv′′ds| ≤ c|v′′(ξ)|,

where we use the fact that r0 is Lipschitz and ξ ∈ (r0(p∗ + h), r0(p∗)) and assume without
loss of generality that r0(p∗ + h) < r0(p∗). Thus, E(h) → 0 as h → 0.

Let us now define φ(r) = wh − ϕ. Using the Mean Value Theorem, we then find that

(|u′|β)φ′ = −
∫ r

r1
ρu(s)

(
(p∗u p∗−1φ)

θu
+ o(h)

)
ds,
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with o(h) → 0 as h → 0, by the above bounds. We now use Gronwall’s inequality to
conclude that φ → 0 and φ′ → 0 as h → 0 on [r1,∞) because φ(r1) → 0 and φ′(r1) → 0
as h → 0. We obtain the differentiability of u with respect to p and the equations for ϕ. ��

We now obtain the following Sturm–Liouville identities satisfied by u = u(p∗) and ϕ.

Lemma 4.2 Let u and ϕ be given as above. Then, we have the following identities:
{
ρu |u′|β [(u′)ϕ − u(ϕ)′]}′ = ρu

θu

[
[p − (β + 1)] u pϕ + u p+1 ln u

]
, (4.3)

{
ρp∗ |u′|β [(ru)′′ϕ − (ru)′(ϕ)′]}′ = ρu

θu

[
[p − (2β + 3)] u pϕ + u p+1 ln u + ru p ln uu′] .

(4.4)

Proof These identities follow using the equations satisfied by ϕ and u. ��
Lemma 4.3 It is not possible to satisfy the following simultaneously:

lim
r→∞ ϕ(r) = c1 ≤ 0 and lim

r→∞ rϕ′(r) = 0.

Proof Because u is a fast decaying solution, there exists C > 0 such that

lim
r→∞ u(r)r Ñ−2 = C and lim

r→∞ u′(r)r Ñ−1 = (2 − Ñ )C. (4.5)

Then,

lim
r→∞ |u′(r)|βu′(r)r (Ñ−1)(β+1) = Cβ+1(2 − Ñ )(Ñ − 2)β . (4.6)

We now use our assumption on ϕ to find:

1. limr→∞ r (Ñ−1)(β+1)|u′(r)|β [u′ϕ − uϕ′] = Cβ+1(Ñ − 2)β(2 − Ñ )c1.
2. limr→∞ r (Ñ−1)(β+1)|u′(r)|β [(ru)′′ϕ − (ru)′ϕ′] = Cβ+1(Ñ − 2)β(2 − Ñ )(3 − Ñ )c1.

For the second limit, we use limr→∞ ru p(r)ϕr (Ñ−1)(β+1) = 0, as u is fast decaying and
p > p̃b, which yields −[(β + 1)(Ñ − 1) + 1] − p(Ñ − 2) < 0.

We now integrate the identities (4.3) and (4.4) to obtain
∫ ∞

0

ρu

θu

[
[p − (2β + 3)] u pϕ + u p+1 ln u + ru p ln uu′]

= Cβ+1(Ñ − 2)β(2 − Ñ )(3 − Ñ )c1,

and
∫ ∞

0

ρu

θu

[
[p − (β + 1)] u pϕ + u p+1 ln u

] = Cβ+1(Ñ − 2)β(2 − Ñ )c1.

If we multiply the first integral by p−(2β+3)
p−(β+1) and subtract the second one, we obtain

∫ ∞

0

ρu

θu

[
(αu + ru′)u p ln u

] =
[
3 − Ñ − p − (2β + 3)

p − (β + 1)

]
Cβ+1(Ñ − 2)β(2 − Ñ )c1.

We observe that in the Emden–Fowler variables x ′(t) = rα(αu + ru′), we can choose
γ (choose T for x(· + T )) such that αu + ru′ changes sign when u is 1. We now have
(αu + ru′)u p ln u > 0, ∀r ≥ 0. Using p > p̃b, we find that the right-hand side is not
positive; thus, we obtain a contradiction. ��
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Continuing with our analysis, we define the function

w = wθ(r) = r θu(r, p).

Then, w satisfies the equation:

w′′ +
(
Ñ − 1 − 2θ

)

r
w′ +

θ
(
θ − Ñ + 2

)

r2
w = − r θu p

�|u′|β for r > r0. (4.7)

We now choose θ > 0 as θ = (Ñ−1)
2 if Ñ > 3 and θ = (Ñ−2)

2 if 2 < Ñ ≤ 3. This function
was introduced by Erbe and Tang [25] for a related problem.

In what follows, we assume that Ñ > 3. The case 2 < Ñ ≤ 3 can be addressed using
similar arguments.

We define the following function:

y(r) = ∂w(r)

∂p
= r θϕ;

then, y satisfies the equation

|u′|β
[
y′′ − β

1

�
u p(u′)−1|u′|−β y′ +

(
(Ñ − 1)(3 − Ñ )

4r2
+ βu p(u′)−1|u′|−β(Ñ − 1)

2�r

+ 1

�
pu p−1|u′|−β

)
y

]

= − 1

�
r−θu p ln u for r > r0. (4.8)

Observe that

C1(r) :=
[

(Ñ − 1)(3 − Ñ )

4r2
+ βu p(u′)−1|u′|−β(Ñ − 1)

2r
+ 1

�
pu p−1|u′|−β

]
< 0, (4.9)

for large r , as u is a fast decaying solution, p > p̃b and β < 0.
We now prove the following lemma that describes the asymptotic behavior of y.

Lemma 4.4 The function y defined above satisfies y(r) > 0 for large r .

Proof Suppose by contradiction that there exists a large r̄ such that y(r̄) ≤ 0. We then have
the following two possibilities:

(a) y(r) ≤ 0, for all r ≥ r̄ or
(b) there exists r∗ > r̄ , and there exists y(r∗) > 0.

• First, we prove part (a):
We have ϕ(r) ≤ 0 for all r ≥ r̄ , and from (4.3), we have for large r ,

{
r (Ñ−1)(β+1)|u′|β [

(u′)ϕ − u(ϕ)′
]}′

= r (Ñ−1)(β+1) [
[p − (β + 1)] u pϕ + u p+1 ln u

]
< 0

and
{
r (Ñ−1)(β+1)|u′|β(ϕ)′

}′ = − [
u p ln u + pu p−1ϕ

]
> 0.

(4.10)

Again, there exist two possibilities:
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1. There exists r∗ ≥ r̄ such that |u′|β(u′(r∗)ϕ(r∗) − u(r∗)ϕ′(r∗)) ≤ 0 or
2. for all r ≥ r̄ , |u′|β(u′(r)ϕ(r) − u(r)ϕ′(r)) > 0.

Case 1 From (4.10), we have |u′|β(u′(r)ϕ(r) − u(r)ϕ′(r)) < 0 for all r ≥ r∗, by which it
follows that the function u

ϕ
is decreasing. Thus, there is a number c∞, possibly −∞,

such that

lim
r→∞

u(r)|u′|βr (Ñ−1)(β+1)−1

ϕ(r)|u′|βr (Ñ−1)(β+1)−1
= c∞.

We use that u is fast decaying to find

lim
r→∞ ϕ(r)|u′|βr (Ñ−1)(β+1)−1 = Cβ+1(Ñ − 2)β

c∞
≤ 0. (4.11)

Because {r (Ñ−1)(β+1)|u′|β(ϕ)′}′ > 0 for large r , there is a positive constant c1,
possibly +∞, such that

lim
r→∞ ϕ′(r)|u′|βr (Ñ−1)(β+1) = c1.

Thus,

lim
r→∞ ϕ′(r)r (Ñ−1) = C1,

for some C1, possibly +∞. Hence, by L‘Hospital’s rule, we obtain

lim
r→∞ ϕ′(r)r (Ñ−1) = (2 − Ñ ) lim

r→∞ ϕ(r)r (Ñ−2) < +∞.

We find that ϕ(r) −→ 0 and rϕ′(r) −→ 0 as r −→ ∞, contradicting Lemma 4.3 .
Case 2 From (4.10), there exists c2 ∈ (−∞,∞] such that limr→∞ ϕ′(r)|u′|βr (N−1)(β+1)

= c2.
In the case that c2 ≤ 0, we have ϕ′(r) < 0 for all large r ; consequently, there exists
c1 ∈ [−∞, 0) such that limr→∞ ϕ(r) = c1.We claim that c1 is finite. In fact, we first
observe that because ϕ′(r)|u′|βr (Ñ−1)(β+1) = r (Ñ−1)(β+1)−1|u′|β(rϕ′(r)) converge
to a finite limit, we necessarily have that limr→∞(rϕ′(r)) = 0.
Then, from (4.10) and the assumption used for case 2, we find a finite constant c ≥ 0
such that

lim
r→∞ r (Ñ−1)(β+1)|u′|β (

u′(r)ϕ(r) − u(r)ϕ′(r)
) = c. (4.12)

It follows that c1 is finite; thus, we obtain a contradiction with Lemma 4.3.
In the case that c2 > 0, ϕ′(r) > 0 for all large r such that there exists a constant
c1 ∈ (−∞, 0] and limr→∞ ϕ(r) = c1.
We have (4.12), from where we find a nonnegative constant c3 such that
limr→∞ rϕ′(r) = c3.
If c3 > 0, then integrating this last limit, we conclude that ϕ is unbounded, which is
impossible. Thus, c3 = 0, and we again obtain a contradiction using Lemma 4.3.

• Now, we prove part (b):
If there exists r1 > r∗, a first point such that y(r1) = 0, then there exists a local maximum
of y for some r2 with y(r2) > 0. However, this contradicts equation (4.8), which implies
y′′(r2) > 0. ��
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Lemma 4.5 The function y defined above satisfies y′(r) > 0 for large r .

Proof By (4.8), we have that y(r) is strictly monotone for large r . Thus,

lim
r→+∞ y(r) = L ∈ [0,+∞].

If L < +∞, we obtain limr→+∞ y′(r) = 0 that is in contradiction with Lemma 4.3, and if
L = +∞, we necessarily have y′(r) > 0 for large r . ��

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1 We return to the notation p∗ ∈ F. If p∗ ∈ F and p < p∗ is close
enough to p∗, we suppose that u(0, p) = u(0, p∗) = γ , where γ was defined in Lemma 4.3.

We suppose that p ∈ F and, as above, Ñ > 3. We also define

w(r) = r
Ñ−1
2 u(r, p), w∗(r) = r

Ñ−1
2 u(r, p∗)

and v = w∗ − w. We have w(r) satisfied by the definition of the Pucci operator

|u′(r, p)|β
(

w′′(r) + (Ñ − 1)(3 − Ñ )

4r2
w(r)

)
≤ −r θ u(r, p)p

�
.

The equation for w∗(r) is

|u′(r, p∗)|β
(

w′′∗(r) + (Ñ − 1)(3 − Ñ )

4r2
w∗(r)

)
= −r θ u(r, p∗)p∗

�
.

Then, v satisfies the equation:

|u′(r, p∗)|β
(

v′′ + (Ñ − 1)(3 − Ñ )

4r2
v

)
+ (|u′(r, p∗)|β − |u′(r, p)|β)

⎛

⎝r
Ñ−1
2

θu(p)
u p|u′|−β

⎞

⎠

+ r θ u(r, p∗)p∗ − u(r, p)p

�
≥ 0,

for large r . From the Mean Value Theorem, we find τ(r) ∈ (min{u′(r, p), u′(r, p∗)},
max{u′(r, p), u′(r, p∗)}) and κ(r) ∈ (min u(r, p),max u(r, p∗)) such that

|u(r, p∗)′|β(v′′ + β

θu(p)
|τ(r)|β−1u p|u′|−βv′

+
[

(Ñ − 1)(3 − Ñ )

4r2
+ β|τ(r)|β−1u p|u′|−β(Ñ − 1)

2θu(p)r

+r θ p∗(κ(r))p
∗−1

�

]
v + r θ u(r, p)p

∗ − u(r, p)p

�
≥ 0 for all r∗ ≥ r̄ .

(4.13)

We now use the continuity of the solution (2.1)–(2.2) with respect to the parameter p, as well
as the fact that u′(r, p) < 0 for all r > 0, to find r̄ and ε > 0 such that u(r, p) < 1 for all
r ≥ r̄ and all p ∈ (p∗ − ε, p∗). Thus, v satisfies the same inequality, but without the last
term.

Using the same argument that we used for the equation satisfied by y, we find that if
v′(r̂) = 0 for some large r̂ , then v′′(r̂) > 0.
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From Lemmas 4.4 and 4.5, there exists a r̃ such that y(r̃) > 0 and y′(r̃) > 0. Thus,
v(r̃) > 0 and v′(r̃) > 0 for p ∈ (p∗ − ε, p∗) near p∗. However, as p ∈ F ∪ S ∪ P and
Ñ > 3, we have v(r) → 0 as r → ∞ or that v(r) is negative for large r . Accordingly, v has
a positive maximum, which brings us to a contradiction. ��
Proof of Proposition 4.2 Assume that p ∈ C and p > p∗. We proceed in a similar way as
in the previous proposition, where, this time, v satisfies the inverse inequality. Next, we find
that there exists a large r̃ such that v(r̃) < 0 and v′(r̃) < 0. This brings us to a contradiction
with the equation satisfied by v. ��
Lemma 4.6 F is a singleton.

Proof Note that the sets C and S ∪ P are open. With the above propositions, we find that
F is a singleton.

Finally, we present the proof of our principal theorems. ��
Proof of Theorem 1.1 From Lemma 4.6, F is a singleton. Then, Proposition 3.1 1) implies
that max{ p̃b+, pβ} < p∗+ < p̃β . Proposition 4.1 implies that if 1 < p < p∗+ ∈ F, there
is no nontrivial radial solution to (2.1), (2.2) (all solutions are crossing). Moreover, we
claim that all radial viscosity solution of (1.7) satisfies (2.1), (2.2). In fact, by the strong
maximum principle (see [11]) nontrivial solution is positive. Using the maximum principle
(see [11] ), that |∇u|βM+

λ,�(D2u) < 0 in B(0, R) and that constants are subsolution of
|∇u|βM+

λ,�(D2u) = 0, we get that u is decreasing and so the origin is a local maximum.
Now we use the regularity results of [26] to get that the solution is C1,γ and therefore

u′(0) = 0. Moreover, using Proposition 1.1 of [26], we get that if u is a solution of (1.7) then
it satisfies

M+
λ,�(D2u) = −u p|∇u|−β in R

N ,

from here by the convexity of M+
λ,� we get by using Evans-type regularity results that u

is C2 (for more details see [27,28] and [8]). Therefore, u satisfies (2.1), (2.2) and the claim
follows.

From Proposition 4.2, we have that p∗+ < p ∈ (S ∪P). Using Lemma 3.3, we obtain that
if p∗+ < p ≤ p̃β , then u(p) is a pseudo-slow decaying solution.

By Proposition 3.1 2, if p̃β < p, then u(p) is a slow decaying solution. ��
Proof of Theorem 1.2 That (1.8) has at least three singular solutions ui , i = 1, 2, 3, follows
by Theorem 1.1 and the analysis of the dynamical system in Lemma 3.3 and Poincare–
Bendixson’s Theorem. In fact, if p∗+ < p < p̃β , then the point T in the dynamical system
is unstable by Lemma 3.3 and bound by a periodic orbit found in part (iii) of Theorem 1.1
so we have the existence of the extra u3 singular solution. In addition, if p = p̃β , the system
is a center around T and the family of periodic orbit around T give rise to the family uμ,
μ ∈ [0, 1]. ��
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