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Abstract
Given a smooth bounded domain Ω of Rn and consider the problem{

−∆u = |u|p − t ψ in Ω
u = 0 on ∂Ω(0.1)

where t is a large positive parameter, p > 1 and ψ is an eigenfunction of −∆ with Dirich-
let boundary condition corresponding to the first eigenvalue λ1. Assuming that Ω con-
tains a k-dimensional compact submanifold K which is stationary and non-degenerate
for the weighted functional ∫

K
ψ

(1− 1
p

)( p+1
p−1−

n−k
2 )
dvol

such that dist(K, ∂Ω) > δ0 > 0 then for 1 < p < n+2−k
n−2−k we prove the existence of a

sequence t = tj →∞ and solutions ut that concentrate along K. This result proves in
particular the validity of a conjecture by Hollman-Mckenna in full generality, see [19],
extending the result in [4] where the case n = 2 and k = 1 has been considered.
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1. Introduction and statement of main results

Given a smooth bounded domain Ω of Rn, n ≥ 3 and consider the following elliptic
Ambrosetti-Prodi type problem

(1.1)
{
−∆u = g(u)− tψ in Ω
u = 0 on ∂Ω

where t is a positive real parameter, ψ is an eigenfunction of −∆ corresponding to
the first Dirichlet eigenvalue λ1, and the function g satisfies

lim
t→+∞

g(t)
t

= µ > λ1 > lim
t→−∞

g(t)
t

= ν.

Here, µ = +∞ and ν = −∞ are allowed.
This problem have attracted lot of attention in the last decades and many works have
been devoted in understanding the number of solutions, we refer the interested readers
to [2, 3] and the references therein. It has been proved that if g(t) grows sub-critically
at∞, then problem (1.1) has at least two solutions: one is a local minimum of the Euler
Lagrange functional and the other is a mountain-pass type solution. If g(ξ) = ξ2 and Ω is
a unit square in R2, Bruer-McKenna-Plum [3] showed, using a computer assisted proof,
that (1.1) admits at least four solutions. If Ω is the unit ball and g(ξ) = ξ2 de Figueiredo-
Santra-Srikanth [11] proved that (1.1) possesses a non-radially symmetric solution for
t > 0 large. Later Dancer-Yan [7, 8], considered the case where g(ξ) = |ξ|p with p

subcritical (1 < p <
N + 2
N − 2, N ≥ 3 and p ∈ (1,+∞) for N = 2). They constructed

solutions with sharp peaks near local maximum points of ψ or near the boundary.
Solutions with arbitrarily many peaks, as t→∞; has been also constructed. This proves
in particular a conjecture due to Lazer and Mckenna, see [23]. These results have been
also extended to different kind of nonlinearities, see for instance [14, 8, 9, 24, 25, 37, 35]
and some references therein.

All the a results mentioned above concern point concentrating solutions. A natural
and interesting question is then whether solutions exhibiting concentration on higher
dimensional sets exist. This is in fact a conjecture formulated by Hollman-McKenna in
[19] based on some numerical evidences. For solutions concentrating on higher dimen-
sional sets for equation (1.1), we are aware of very few results. The one-dimensional case
with N = 2 has been recently studied by Bakhti-Santra [4]. They proved that given a
closed curve Γ in Ω, which is stationary and nondegenerate with respect to the weighted
functional

∫
Γ ψ

p+3
2p and which satisfies dist(Γ, ∂Ω) > 0, then as ε tends to zero and satis-

fying some gap condition (to be described later), problem (1.1) has a solution uε which
concentrates near Γ. The gap condition is in fact related to a resonance phenomenon,
which is a typical phenomenon for concentration on positive dimensional sets and that
one meets in the study of higher dimensional concentration for several problems such
as singularly perturbed equations, nonlinear Shrödinger equation, constant mean cur-
vature hypersurfaces, etc. These results shows in fact that high dimensional-bubbling
phenomenon is conceptually quite different to point bubbling.

Note that setting ε2 = t−(p−1)/p, it is easy to check that u is a solution of (1.1) (with
g(u) = |u|p) if and only if t−1/pu is solution of

(1.2)
{
−ε2∆u = |u|p − ψ on Ω,
u = 0 in ∂Ω.
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The main purpose of this paper is to prove existence of solutions to this above problem
that concentrate at a submanifold K of dimension 1 ≤ k ≤ n − 1 with 1 < p < n−k+2

n−k−2
if n− k ≥ 3 and p ∈ (1,+∞) if n− k = 1, 2.

Noticing the similarities between the above Ambrosetti-Prodi type problem and the
nonlinear Schrödinger equation with potential in the whole space or in a compact rie-
mannian manifold without boundary. The latter one has been extensively studied in
the last decades and solutions concentrating at points or high dimensional sets has been
obtained. We refers the reader to del Pino-Kowalczyk-Wei [12] for curve concentration,
Mahmoudi-Malchiodi-Montenegro [30] for curve concentration but for complex-valued
solution with highly oscillatory phase and Mahmoudi-Sánchez-Yao [26] for higher di-
mensional concentration. See also [13, 10, 16, 28, 29, 31, 32, 33, 34, 38] for some related
problems.

If one looks formally for solutions that concentrate near a submanifoldK of dimension
k, we choose an appropriate system of coordinates (Fermi coordinates) (y, z) ∈ K×Rn−k.
Then, scaling on n − k variable, the profile of solutions concentrating near K is given
by the ground state Uψ(y) of the limiting equation

(1.3) −∆u+ ψ(y, 0)− up = 0 in Rn−k.

Then one formally looks for solutions which behave qualitatively like

(1.4) uε(x) ∼ Uψ(y)(
x− Φ(y)

ε
), as ε tends to zero

where Φ is a normal section defined on K. Since Uψ(y) decays exponentially to 0 at
infinity, uε vanishes rapidly away from K.

Note that unlike the point concentration case, the limit set is not stationary for the
potential ψ. Indeed, define the energy functional

(1.5) E(u) =
∫

Ω

(ε2

2 |∇ḡu|
2 + ψ(z)u

)
− 1
p+ 1

∫
Ω
|u|p+1.

If we look for solution of the forme u = UK + φ where UK is an approximate solution
with leading term given by the function uε defined in (1.4), then performing the change
of variables

u(x) = ψ(x0)αv
(
ψ(x0)β x

)
with an appropriate choice of the constants α and β, one gets that

E(UK) ∼ εn−k
∫
K
ψσdvol, with σ = p− 1

p

(p+ 1
p− 1 −

n− k
2

)
.

Based on the above energy considerations, one can suspect that concentration on k-
dimensional sets for k = 1, · · · , n − 1 is expected under suitable stationary and non-
degeneracy assumptions on the limit set K.

By adapting an infinite dimensional version of the Lyapunov-Schmidt reduction method
developed in [12], Manna-Santra [12] successfully proved the validity of the Hollman-
Mckenna conjecture for n = 2 and k = 1. The main aim of this paper is to generalize
this result to any dimension and codimension. For this purpose, we first recall the key
steps in [4] [12] and [39]. The first main step is the construction of proper approximate
solutions for general submanifolds, to this aim we first expand the Laplace-Betrami
operator for arbitrary submanifolds, see Proposition 2.1. Then by an iterative scheme
of Picard’s type, a family of very accurate approximate solutions can be obtained, see
Section 3. Next we develop an infinite dimensional reduction such that the construction
of positive solutions of problem (1.1) can be reduced to the solvability of a reduced
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system (4.10). For more details about the setting-up of the problem, we refer the reader
to Subsection 4.1. Our main result of this paper is the following:

Theorem 1.1. Let Ω be a smooth n-dimensional bounded domain and let ψ : Ω → R
be an eigenfunction of −∆ with Dirichlet boundary condition corresponding to the first
eigenvalue λ1. Given k = 1, . . . , n − 1, and 1 < p < n+2−k

n−2−k . Suppose that K be a
stationary non-degenerate smooth compact submanifold in Ω for the weighted functional∫

K
ψ

(1− 1
p

)( p+1
p−1−

n−k
2 )
dvol

with dist(K, ∂Ω) > δ > 0, then there is a sequence εj → 0 such that problem (1.1)
possesses solutions uεj which concentrate near K. Moreover, for some constants C,
c0 > 0, the solutions uεj satisfies globally

|uεj (z)| ≤ C exp
(
− c0 dist(z,K)

/
εj
)
.

The gap condition on ε is due to a resonance phenomena, namely the existence of
values of ε for which the linearised operator is not invertible. Similar conditions can be
found in [4, 12, 39] and some references therein.

Before closing this introduction, we notice that problem (1.1) is similar to the following
singular perturbation problem

(1.6) ε2∆ḡu− V (z)u+ up = 0 in M,

where (M, ḡ) is a compact smooth n-dimensional Riemannian manifold without bound-
ary or the Euclidean space Rn, ε is a small positive parameter, p > 1 and V is a
uniformly positive smooth potential. In [26], Mahmoudi and al. proove the following
result: Given k = 1, ..., n− 1, and 1 < p < n+2−k

n−2−k . Assuming that K is a k−dimensional
smooth, embedded compact submanifold of M , which is stationary and non-degenerate
with respect to the functional

∫
K V

p+1
p−1−

n−k
2 dvol, we prove the existence of a sequence

ε = εj → 0 and positive solutions uε that concentrate along K. This result proves in
particular the validity of a conjecture by Ambrosetti and al. [1], extending a recent
result by Wang and al. [39], where the one co-dimensional case has been considered.
This latter problem arises in the study of some biological models and as (1.1) it exhibits
concentration of solutions at some points of Ω. Since this equation is homogeneous,
then the location of concentration points is determined by the geometry of the do-
main. On the other hand, it has been proven that solutions exhibiting concentration
on higher dimensional sets exist. For results in this direction we refer the reader to
[13, 28, 29, 31, 32, 33, 38].

The paper is organized as follows. In Section 2 we introduce the Fermi coordinates
in a tubular neighborhood of K in M and we expand the Laplace-Beltrami operator in
these Fermi coordinates. In Section 3, a family of very accurate approximate solutions
is constructed. Section 4 will be devoted to develop an infinite dimensional Lyapunov-
Schmidt reduction and to prove Theorem 1.1.

Acknowledgments. The research of the second author has been supported by Fondecyt
Grant 1140311, fondo Basal CMM and “Millennium Nucleus Center for Analysis of PDE
NC130017".
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2. Preliminary background

This section will devoted to introducing some geometric background like Fermi co-
ordinates which play important role in the higher dimensional concentrations. We first
introduce the auxiliary weighted functional corresponding to problem (1.1).

2.1. Stationary, non-degenerate submanifolds. Given a k-dimensional compact
submanifold K of Rn, 1 ≤ k ≤ n − 1 and let {Kt}t be a smooth one-parameter family
of submanifolds such that K0 = K. We define weighted functional

(2.1) E(t) =
∫
Kt
ψσdvol, with σ = (1− 1

p
)
(p+ 1
p− 1 −

n− k
2

)
.

Denote ∇T and ∇N to be connections projected to the tangential and normal spaces on
K. We give the following definitions on K which appeared in Theorem 1.1.

Definition 2.1 (Stationary condition). A submanifold K is said to be stationary relative
to the functional

∫
K ψ

σdvol if

σ∇Nψ = −ψH on K,(2.2)
where H is the mean curvature vector on K.

Definition 2.2 (Nondegeneracy (ND) condition). We say that K is non-degenerate if
the quadratic form∫

K

{〈
∆KΦ + σ

ψ
∇Kψ · ∇KΦ,Φ

〉
+ σ−1

(n− k)pH(Φ)2 − σ

ψ

(
∇N

)2
ψ [Φ,Φ]

+ Γab (Φ)Γba(Φ)
}
ψσ
√

det(g)(2.3)

defined on the normal bundle to K, is non-degenerate.
Here and in the rest of this paper, Einstein summation convention is used, that is,

summation over repeated indices is understood.

2.2. Expansion of the metric near geodesic normal coordinates. Let K be
a k-dimensional submanifold of Rn contained in Ω such that dist(K, ∂Ω) > δ0 > 0
(1 ≤ k ≤ n − 1). Define N = n − k, we choose along K a local orthonormal frame
field

(
(Ea)a=1,··· ,k, (Ei)i=1,··· ,N

)
which is oriented. At points of K, we have the natural

splitting
Rn = TpK ⊕NpK

where TpK and NpK are respectively the tangent space to K and the normal space of
K at p, which are spanned respectively by (Ea)a and (Ei)i.

We denote by ∇ the connection induced by the metric ḡ and by ∇N the corresponding
normal connection on the normal bundle. Given p ∈ K, we use some geodesic coordi-
nates y centered at p. We also assume that at p the normal vectors (Ei)i, i = 1, . . . , N ,
are transported parallely (with respect to∇N ) through geodesics from p, so in particular
(2.4) ḡ (∇EaEj , Ei) = 0 at p, ∀ i, j = 1, . . . , N, a = 1, . . . , k.
In a neighborhood of p in K, we consider normal geodesic coordinates

f(ȳ) := expKp (yaEa), ∀ ȳ := (y1, . . . , yk),

where expK is the exponential map on K and summation over repeated indices is under-
stood. This yields the coordinate vector fields Xa := f∗(∂ya). We extend the Ei along
each geodesic γE(s) so that they are parallel with respect to the induced connection
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on the normal bundle NK. This yields an orthonormal frame field Xi for NK in a
neighborhood of p in K which satisfies

∇XaXi|p ∈ TpK.

A coordinate system in a neighborhood of p in Ω is now defined by

(2.5) F (ȳ, x̄) := f(y) + xiXi(f(y)) ∀ (ȳ, x̄) := (y1, . . . , yk, x1, . . . , xN ),

with corresponding coordinate vector fields

Xi := F∗(∂xi) and Xa := F∗(∂ya).

By our choice of coordinates, on K the metric ḡ splits in the following way

(2.6) ḡ(q) = ḡab(q) dya ⊗ dyb + ḡij(q) dxi ⊗ dxj , ∀q ∈ K.

We denote by Γba(·) the 1-forms defined on the normal bundle, NK, of K by the formula

(2.7) ḡbcΓcai := ḡbcΓca(Xi) = ḡ(∇XaXb, Xi) at q = f(ȳ).

Define q = f(ȳ) = F (ȳ, 0) ∈ K and let (g̃ab(y)) be the induced metric on K. When
we consider the metric coefficients in a neighborhood of K, we obtain a deviation from
formula (2.6), which is expressed by the next lemma. The proof is somewhat standard
and is thus omitted, we refer to [13, 29, 27] for more general setting.

Lemma 2.1. At the point F (ȳ, x̄), the following expansions hold, for any a = 1, ..., k
and any i, j = 1, ..., N , where N = n− k,

ḡab = g̃ab −
{
g̃ac Γcbi + g̃bc Γcai

}
x̄i +

[
g̃cdΓcas Γdbl

]
x̄sx̄l

ḡij = δij ;

ḡaj = 0.

Define Kε := 1
ε K and Ωε := 1

ε Ω. Since F (ȳ, x̄) is a Fermi coordinate system on
Ω, then Fε(y, x) := 1

ε F (εy, εx) defines a Fermi coordinate system on Ωε. With this
notation, here and in the sequel, by slight abuse of notation we denote ψ(εy, εx) to
actually mean ψ(εz) = ψ

(
F (εy, εx)

)
in the Fermi coordinate system. The same way is

understood to its derivatives with respect to y and x.
Given a smooth normal vector field Φ defined on K and define x = ξ + Φ(εy) so

that (y, ξ) is the Fermi coordinate system for the submanifold KΦ. The parameter Φ
will be adjusted later to show that there are solutions concentrating on KΦ for some
subsequence of ε.

We denote by gαβ the metric coefficients in the new coordinates (y, ξ). It follows that

gαβ =
∑
γ,δ

ḡγδ
∂zα
∂ξγ

∂zβ
∂ξδ

.

Which yields
gij = ḡij |ξ+Φ, gaj = ḡaj |ξ+Φ + ε ∂āΦlḡjl|ξ+Φ,

and
gab = ḡab|ξ+Φ + ε

{
ḡaj ∂b̄Φ

j + ḡbj ∂āΦj
}
|ξ+Φ + ε2 ∂āΦi ∂b̄Φ

j ḡij |ξ+Φ

where summations over repeated indices is understood.
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To express the error terms, it is convenient to introduce some notations. For a
positive integer q, we denote by Rq(ξ), Rq(ξ,Φ), Rq(ξ,Φ,∇Φ), and Rq(ξ,Φ,∇Φ,∇2Φ)
error terms such that the following bounds hold for some positive constants C and d:

|Rq(ξ)| ≤ Cεq(1 + |ξ|d),

|Rq(ξ,Φ)| ≤ Cεq(1 + |ξ|d),
|Rq(ξ,Φ)−Rq(ξ, Φ̄)| ≤ Cεq(1 + |ξ|d)|Φ− Φ̄|,

|Rq(ξ,Φ,∇Φ)| ≤ Cεq(1 + |ξ|d),
|Rq(ξ,Φ,∇Φ)−Rq(ξ, Φ̄,∇Φ̄)| ≤ Cεq(1 + |ξ|d)

(
|Φ− Φ̄|+ |∇Φ−∇Φ̄|

)
,

and
|Rq(ξ,Φ,∇Φ,∇2Φ)| ≤Cεq(1 + |ξ|d) + Cεq+1(1 + |ξ|d)|∇2Φ|,∣∣Rq(ξ,Φ,∇Φ,∇2Φ)−Rq(ξ, Φ̄,∇Φ̄,∇2Φ̄)

∣∣
≤ Cεq(1 + |ξ|d)

(
|Φ− Φ̄|+ |∇Φ−∇Φ̄|

)(
1 + ε|∇2Φ|+ ε|∇2Φ̄|

)
+ Cεq+1(1 + |ξ|d)|∇2Φ−∇2Φ̄|.

Using the expansion of the previous lemma, one can easily show that the following
lemma holds true.

Lemma 2.2. In the coordinate (y, ξ), the metric coefficients satisfy
gab = g̃ab − ε

{
g̃bcΓcak + g̃acΓcbk

}
(ξk + Φk) + ε2g̃cd ΓcakΓdbl(ξk + Φk)(ξl + Φl) + ε2∂āΦj∂b̄Φ

j ,

gaj = ε∂āΦj ,

gij = δij .

And the inverse metric coefficients gαβ satisfy

gab = g̃ab + ε

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi)

+ ε2
(
g̃ac ΓbdkΓdcl + g̃bc ΓadkΓdcl + g̃cd ΓadkΓbcl

)
(ξk + Φk)(ξl + Φl) +R3(ξ,Φ,∇Φ),

gaj = −ε g̃ab ∂b̄Φ
j + ε2∂b̄Φ

j
{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi) +R3(ξ,Φ,∇Φ),

gij = δij + ε2 g̃ab ∂āΦi∂b̄Φ
j +R3(ξ,Φ,∇Φ).

Furthermore, we have the validity of the following expansion for the log of the determi-
nant of g:
log

(
det g

)
= log

(
det g̃

)
− 2εΓbbk (ξk + Φk)− ε2 ΓcamΓacl (ξm + Φm) (ξl + Φl) +R3(ξ,Φ,∇Φ).

Proof. The expansions of the metric in the above lemma follow from Lemma 2.1 while
the expansion of the log of the determinant of g follows from the fact that one can write
g = G+M with

G =
(
g̃ 0
0 IdRN

)
and M = O(ε),

then we have the following expansions

g−1 =
(
I +G−1M

)−1
G−1 =

(
I −G−1M +G−1MG−1M +O(‖M‖3)

)
G−1
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and
log

(
det g

)
= log

(
detG

)
+ tr(G−1M)− 1

2tr
(
(G−1M)2

)
+O(‖M‖3).

and the lemma follows at once. �

2.3. Expansion of the Laplace-Beltrami operator. In terms the above notations,
we have the following expansion of the Laplace-Beltrami operator. We postpone the
proof to Appendix A.

Proposition 2.1. Let u be a smooth function on Ωε. Then in the Fermi coordinate
system (y, ξ), the following expansion holds
∆gu = ∂2

iiu+ ∆Kεu− εΓbbj∂ju− 2ε g̃ab ∂b̄Φ
j ∂2

aju+ 2 ε g̃cb Γacs (ξs + Φs)∂2
abu

+ ε2∇KΦi · ∇KΦj ∂2
iju− ε2 Γddk ∂b̄Φ

k g̃ab∂au+ 2ε2∂b̄Φ
j
{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi) ∂2

aju

+ ε2
{
g̃ac ΓbdkΓdcl + g̃bc ΓadkΓdcl + g̃cd ΓadkΓbcl

}
(ξk + Φk)(ξl + Φl) ∂2

abu− ΓcakΓacj (ξk + Φk)∂ju

− ε2∆KΦj∂ju+ 2ε3∂2
āb̄

ΦjΓbak(ξk + Φk)∂ju− ε2
(
g̃ab ∂āΓddk − ∂ā

{
g̃cbΓack + g̃caΓbck

})
(ξk + Φk)∂bu

+ 2ε2
{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi ∂au+ 1

2 ε
2 ∂ā(log det g̃)

{
g̃cbΓaci + g̃caΓbci

}
(ξi + Φi)∂bu

+R3(ξ,Φ,∇Φ,∇2Φ)(∂ju+ ∂au) +R3(ξ,Φ,∇Φ)(∂2
iju+ ∂2

aju+ ∂2
abu).

Remark 2.1. Notice that the coefficients of all the derivatives of u in the above expan-
sion are smooth bounded functions of the variable ȳ = εy. The slow dependence of theses
coefficients of y is important in our construction of some proper approximate solutions.

3. Construction of approximate solutions

The first key step in proving Theorem 1.1 is to construct some proper approximate
solutions. To achieve this goal, we first construct some very accurate local approximate
solutions in a tubular neighbourhood of Kε by an iterative scheme of Picard’s type and
to define some proper global approximate solutions by the gluing method.

We first recall the following key lemma and we refer to Theorem 2.1 in [7] for the
proof.

Lemma 3.1. There is an ε0 > 0, such that for each ε ∈ (0, ε0], (1.2) has a solution uε,
such that 0 > uε > −ψ

1
p , ∀x ∈ Ω, and

uε(x) = −ψ
1
p (x)− ε2 ∆ψ

1
p (x)

pψ
p−1
p (x)

+ o(ε2)(3.1)

where ε−2o(ε2) −→ 0, uniformly on any compact subset of Ω as ε→ 0.

3.1. Facts on the limit equation. Recall that by the scaling, equation (1.2) (with
g(u) = |u|p) becomes{

−∆v = |v|p − ψ(εz), in Ωε,

u = 0 on ∂Ωε,
(3.2)

where Ωε := Ω/ε and v(z) = u(εz).
Now given uε be the solution of (1.2) given by the above lemma, we look for a solution
of (3.2) of the form

ṽ(z) = v(z) + uε(εz).(3.3)
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Then we can easily check that v satisfies the equation

−∆gv = |v − q(εz)|p − |q(εz)|p in Ωε; v = 0 on ∂Ωε(3.4)

where

q(εz) = q(εy, εx) := −uε
(
F (εy, εx)

)
.(3.5)

We consider a further change of variable in (3.4) that remplaces the main order of the
potentiel q by 1.

Writing ψ(εz) = ψ(εy, εx) with x = ξ + Φ(εy), the following expansion (of the eigen-
function ψ) hold true

ψ(εz) = ψ(εy, 0) + ε〈∇Nψ(εy, 0), ξ + Φ〉+ ε2

2 (∇N )2ψ(εy, 0)[ξ + Φ]2 +R3(ξ,Φ).(3.6)

Using the expansion of the Laplace-Beltrami operator in Proposition 2.1 and the above
expansion of ψ, then since the profile of solutions depends slowly on the variable y, the
leading equation is given by

(3.7)
N∑
i=1

∂2
ξiξiv − ψ(εy, 0) + |v|p = 0.

Recalling the definition of q given in (3.5) we define the following functions

(3.8)



µ(εy) := |q(εy, 0)|
p−1

2 , h(εy) := q(εy, 0) ∀ y ∈ Kε

and

µ̃(εy) := ψ
p−1
2p (εy, 0); h̃(εy) := ψ

1
p (εy, 0), ∀ y ∈ Kε.

Now, we define the following scaling

(3.9) v(y, ξ) = h(εy)w
(
y, ξ̄

)
with ξ̄ = µ(εy)ξ ∈ RN .

We will establish the expression of equation (3.4) in the new coordinates
(
y, ξ̄

)
.We turn

to the equation (3.2), in the spirit of above argument, we look for a solution v of the
form (3.9). An easy computation shows that

∂av = h ∂aw + ε(∂āh)w + ε h ∂āµ ξ
j∂jw,

∂2
ijv = hµ2 ∂2

ijw,

∂2
ajv = ε

(
µ∂āh+ h∂āµ

)
∂jw + hµ∂2

ajw + ε hµ ξi ∂āµ∂
2
ijw,

∂2
abv = h ∂2

abw + ε
(
∂b̄h ∂aw + ∂āh ∂bw + h∂b̄µ ξ

j∂2
ajw + h∂āµ ξ

j∂2
bjw

)
+ ε2

(
∂āh∂b̄µξ

j∂jw + ∂b̄h∂āµξ
j∂jw + ∂2

āb̄
hw + h∂āµ∂b̄µξ

iξj∂2
ijw + h∂2

āb̄
µξj∂jw

)
,

and

∆Kεv = ε2∆Khw + h∆Kεw + 2ε∇Kh · ∇Kεw + ε2 (h∆Kµ+ 2∇Kh · ∇Kµ
)
ξj ∂jw

+ ε2 h |∇Kµ|2 ξjξl ∂2
jlw + 2ε h ξj ∇Kµ · (∇Kε∂jw).
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Using the above computations, one can easily see that the Laplace-Beltrami operator
on v can be expanded in terms of w as

h−1µ−2︸ ︷︷ ︸
h−p

∆gv = ∆RNw + µ−2 ∆Kεw +B(w),

with B(w) = B1(w) +B2(w). Here B1 and B2 are respectively given by

B1(w) = −ε µ−1 Γbbj ∂jw − ε2 µ−1 ΓcakΓacj ( 1
µ
ξ̄k + Φk)∂jw + ε2 h−1 µ−2 ∆Khw

+ 2ε2 (hµ2)−1∇Kh ·
( ξ̄j
µ
∇Kµ− µ∇KΦj

)
∂jw + 2ε h−1 µ−2∇Kh · ∇Kεw

+ ε2
(
µ−2ξ̄i∇Kµ−∇KΦi

) (
µ−2ξ̄j ∇Kµ−∇KΦj

)
∂2
ijw(3.10)

+ ε2 µ−2
( ξ̄j
µ

∆Kµ− 2∇Kµ · ∇KΦj − µ∆KΦj
)
∂jw

+ 2ε µ−2
( ξ̄j
µ
∇Kµ− µ ∇KΦj

)
· ∇Kε

(
∂jw

)
,

and

hµ2B2(w) = −ε2 hΓddj ∇KΦj · ∇Kεw

+ 2 ε g̃cb Γacs
( 1
µ
ξ̄s + Φs

) (
h ∂2

abw + ε
{
∂b̄h ∂aw + ∂āh ∂bw + h∂b̄µ

ξ̄j

µ
∂2
ajw + h∂āµ

ξ̄j

µ
∂2
bjw

})
+ 2ε2 hµ∂bΦj

{
g̃bc Γaci + g̃ac Γbci

}( 1
µ
ξ̄i + Φi

)
∂2
ajw + 2ε3 hµ∂2

āb̄
ΦjΓbak

( 1
µ
ξ̄k + Φk

)
∂jw

+ ε2 h
{

2g̃ac ΓbdkΓdcl + g̃cd ΓadkΓbcl
}( 1

µ
ξ̄k + Φk

)( 1
µ
ξ̄l + Φl

)
∂2
abw(3.11)

− ε2 h
(
g̃ab ∂āΓddk − ∂ā

{
g̃cbΓack + g̃caΓbck

})( 1
µ
ξ̄k + Φk

)
∂bw

+ 2ε2 h
{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi ∂aw + 1

2 ε
2 h ∂ā(log det g̃)

{
g̃cbΓaci + g̃caΓbci

}( 1
µ
ξ̄i + Φi

)
∂bw

+ R3(ξ,Φ,∇Φ,∇2Φ)
(
∂jw + ∂aw

)
+R3(ξ,Φ,∇Φ)

(
∂2
ijw + ∂2

ajw + ∂2
abw

)
.

We set

Sε(v) = ∆gv + |v − q(εz)|p − |q(εz)|p,

then by the above expansions one can easily write

h−1µ−2 Sε(v) = ∆RNw + µ−2 ∆Kεw +B(w) + h−p
(
|hw − q(εx, εy)|p − |q(εx, εy)|p

)
= ∆RNw + µ−2 ∆Kεw +B(w) + h−p

(
|h(1− w) + (q(εx, εy)− h)|p − |q(εx, εy)|p

)
.

Now using the following expansion of the potential q:

q(εy, εx) = q(εy, 0) + ε〈∇Nq(εy, 0), ξ̄
µ

+ Φ〉+ ε2

2 (∇N )2q(εy, 0)[ ξ̄
µ

+ Φ]2 +R3(ξ̄,Φ),
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we obtain

|h(1− w) +
(
q(εx, εy)− h

)
|p = hp|1− w|p + php−1|1− w|p−2(1− w)

(
q(εx, εy)− h

)
+ p(p− 1)

2 hp−2|1− w|p−2(q− h)2 +O(ε3)

= hp
[
|1− w|p + ph−1|1− w|p−2(1− w)

(
ε < ∇Nq(εy, 0), ξ + Φ >

+ 1
2ε

2(∇N )2q(εy, 0)
[
ξ + Φ

]2)
+ p(p− 1)

2 h−2|1− w|p−2ε2 < ∇Nq(εy, 0), ξ + Φ >2 +O(ε3)
]

= hp
[
|1− w|p − ph−1|1− w|p−2(w − 1)ε < ∇Nq(εy, 0), ξ + Φ >

− 1
2ph

−1|1− w|p−2(w − 1)ε2(∇N )2q(εy, 0)
[
ξ + Φ

]2
+ p(p− 1)

2 h−2|1− w|p−2ε2 < ∇Nq(εy, 0), ξ + Φ >2 +O(ε3)
]
.

On the other hand,

|q|p =
∣∣h+ ε〈∇Nq(εy, 0), ξ̄

µ
+ Φ〉+ ε2

2 (∇N )2q(εy, 0)[ ξ̄
µ

+ Φ]2 +R3(ξ̄,Φ)
∣∣p

= hp
[
1 + ph−1ε < ∇Nq(εy, 0), ξ + Φ > +1

2ph
−1ε2(∇N)2q(εy, 0)

[
ξ + Φ

]2
+ p(p− 1)

2 ε2h−2 < ∇Nq(εy, 0), ξ + Φ >2 +O(ε3)
]
.

So we have

|h(1− w)+
(
q(εx, εy)− h

)
|p − |q(εx, εy)|p = hp

[
|w − 1|p − 1 + ph−1ε < ∇Nq(εy, 0), ξ + Φ > ×

×
(
|1− w|p−2(1− w)− 1

)
+ 1

2ph
−1ε2(∇N)2q(εy, 0)

[
ξ + Φ

]2(|1− w|p−2(1− w)− 1
)

+ p(p− 1)
2 ε2h−2 < ∇Nq(εy, 0), ξ + Φ >2

(
|1− w|p−2 − 1

)
+O(ε3)

]
.

We have the equation satisfied by w in the new coordinates

S̃ε(w) := ∆RNw + h1−p ∆Kεw + |w − 1|p − 1 + B̃(w) = 0(3.12)

where B̃(w) = B̃1(w) + B̃2(w), with

B̃1(w) = B1(w) + ph−1ε < ∇N q(εy, 0), ξ̄
µ

+ Φ >
(
|1− w|p−2(1− w)− 1

)
+ 1

2ph
−1ε2(∇N )2 q(εy, 0)[ ξ̄

µ
+ Φ]2

(
|1− w|p−2(1− w)− 1

)
+ p(p− 1)

2 h−2ε2 < ∇N q(εy, 0), ξ̄
µ

+ Φ >2
(
|1− w|p−2 − 1

)
,

and
B̃2(w) = B2(w) +R3(ξ̄,Φ).

Where B1(w) and B2(w) are defined respectively in (3.10) and (3.11).
At the end of this subsection, let us list some basic and useful properties of positive
solutions of the limit equation (3.7).



12 ZIED KHEMIRI, FETHI MAHMOUDI∗ AND ABDELLATIF MESSAOUDI

Consider the following elliptic problem:



−∆RNu = |u− 1|p − 1, u > 0 in RN

u(0) = max
ξ∈RN

u(ξ)

u ∈ H1(RN )

(3.13)

Since p is subcritical in RN , using the standard Lions’s concentration compactness
arguments, we can prove that (3.13) have a positive solution U. It is easy to see that U
decays exponentially at infinity and is radially symmetric.
The following Proposition is essential for us to construct solutions.

Proposition 3.1. Let U be a solution of (3.13). If 1 < p < ∞ for N = 2 and
1 < p < N+2

N−2 for N ≥ 3, then U is unique and nondegenerate. That is, the kernel of
the operator −∆u− p|U − 1|p−2(U − 1)u in H1(RN ) is spanned by { ∂U∂x1

, ..., ∂U∂xN }.

Then every solution of problem (3.13) has the form U(· −Q) for some Q ∈ RN , where
U(x) = U(|x|) ∈ C∞(RN ) is the unique positive radial solution which satisfies

(3.14) lim
r→∞

r
N−1

2 erU(r) = cN,p, lim
r→∞

U ′(r)
U(r) = −1.

Here cN,p is a positive constant depending only on N and p. Furthermore, U is non-
degenerate in the sense that

Ker
(
−∆RN − p|U − 1|p−2(U − 1)

)
∩ L∞(RN ) = Span

{
∂x1U, · · · , ∂xNU

}
,

and the Morse index of U is one, that is, the linear operator

L0 := −∆RN − p|U − 1|p−2(U − 1)

has only one negative eigenvalue λ0 < 0, and the unique even and positive eigenfunction
corresponding to λ0 can be denoted by Z.

Proof. It is easy to check that the uniqueness follows from the general theorem in [21].
The nondegeneracy in the space of radial functions follows easily as [5], and then the
nondegeneracy in general follows easily as in [[6], p. 970, 971].

An immediate consequence of the above proposition is the following result

Corollary 3.1. There is a constant γ0 > 0 such that

(3.15)
∫
RN

{
|∇ϕ|2 + p|U − 1|p−1ϕ2

}
dξ̄ ≥ γ0

∫
RN

(
|∇ϕ|2 + Φ2) dξ̄,

whenever ϕ ∈ H1(RN ) and∫
RN

ϕ∂jU dξ̄ = 0 =
∫
RN

ϕZ dξ̄, ∀ j = 1, . . . , N.

We are now in position to construct very accurate approximate solutions. This is the
aim of the next subsections.
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3.2. Local approximate solutions. By (3.12) it obvious that in a tubular neighbour-
hood of the scaled submanifold Kε, the equation Sε(v) = 0 is equivalent to S̃ε(w) = 0.

We will look for approximate solutions of the form

w = w(y, ξ̄) = U(ξ̄) +
I∑
`=1

ε`w`(εy, ξ̄) + εe(εy)Z(ξ̄),(3.16)

where I ∈ N+, U and Z are given in Proposition 3.1, w`’s and e are smooth bounded
functions on their variables.

To solve S̃ε(w) = 0 accurately, the normal section Φ is to be chosen in the following
form

Φ = Φ0 +
I−1∑
`=1

ε` Φ`,

where Φ0, . . . ,ΦI−1 are smooth bounded functions on ȳ.

3.2.1. Expansion at first order in ε. We first solve the equation S̃ε(w) = 0 up to order
ε. Let w be of the form (3.16), then using the fact that µ(εy) = µ̃(εy) +O(ε2) and

∇Nq(εy, 0) = ∇N
(
ψ1/p(εy, 0)

)
+O(ε2) = 1

p
ψ

1−p
p ∇Nψ(εy) +O(ε2)

we can write

S̃ε(w) = ε
(
∆RNw1 + p|U − 1|p−2(U − 1)w1

)
+ ε

(
ε2µ̃−2∆Ke− λ0e

)
Z

+ ε
(
− µ̃−1Γbbj∂jU + µ̃

2
1−p ψ

1−p
p 〈∇Nψ(εy, 0), ξ̄

µ̃
+ Φ0〉

(
|1− U |p−2(1− U)− 1

))
+ O(ε2).

Our aim is to choose the function w1 in such away the term of order ε in the right-hand
side of above equation vanishes. This is clearly equivalent to choose w1 to be solution
of the following linear equation

(3.17) L0w1 = µ̃−1 Γbbj∂jU − µ̃
2

1−p ψ
1−p
p 〈∇Nψ(εy, 0), ξ̄

µ̃
+ Φ0〉

(
|1− U |p−2(1− U)− 1

)
where L0 is the operator defined in Proposition 3.1. Here and in the following, we will
keep the term ε

(
ε2µ̃−2∆Ke − λ0e

)
Z in the error. The reason is simply that it cannot

be cancelled without solving an equation for e since L0Z = λ0Z.
By Proposition 3.1, equation (3.17) is solvable if and only if the right hand side is

orthogonal to the kernel of L0. Namely, if and only if for all i = 1, . . . , N ,
(3.18)∫
RN

(
µ̃−1Γbbj∂jU − µ̃

2
1−pψ

1−p
p 〈∇Nψ(εy, 0), ξ̄

µ̃
+ Φ0〉

(
|1− U |p−2(1− U)− 1

))
∂iUdξ̄ = 0.

Observe that since U is even in ξ̄ and ∂iU is odd in ξ̄, we have∫
RN
〈∇Nψ1/p(εy, 0),Φ0〉

(
|1− U |p−2(1− U)− 1

)
∂iU dξ̄ = 0.

We conclude that equation (3.17) is solvable if and only if for all i = 1, . . . , N ,

(3.19)
∫
RN

µ̃−1Γbbj∂jU− µ̃
2

1−p ψ
1−p
p 〈∇Nψ(εy, 0), ξ̄

µ̃
〉
(
|1−U |p−2(1−U)−1

))
∂iU dξ̄ = 0.
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Recalling the definition of µ̃ given in (3.8), we have that µ̃
2

1−p ψ
1−p
p = ψ−1. It follows

then that (3.17) is solvable if and only if for all i = 1, . . . , N∫
RN

Γbbj∂jU − ψ−1 〈∇Nψ(εy, 0), ξ̄〉
(
|1− U |p−2(1− U)− 1

))
∂iU dξ̄ = 0.(3.20)

Since U is radially symmetric, (3.20) is equivalent to

Γbbi
∫
RN
|∂1U |2dξ̄ = ψ−1∂iψ(εy, 0)

∫
RN

(
|1− U |p−2(1− U)− 1

)
ξi∂iUdξ̄.

We claim that

(3.21)



∫
RN
(
|1− U |p−2(1− U)− 1

)
ξi∂iUdξ̄ = N

∫
RN Udξ̄,

and

∫
RN Udξ̄ = σ

N

∫
RN |∂1U |2dξ̄

where σ = p− 1
p

(p+1
p−1 −

n−k
2
)
. See Appendix B for the proof of (3.21)

We get
1
σ

Γbbi
∫
RN

Udξ̄ = ψ−1∂iψ(εy, 0)
∫
RN

Udξ̄.

Using the definition of the mean curvature vector H on K

H = (−Γbbi)
we get that equation (3.17) is solvable if and only if

σ∇Nψ(εy, 0) = −ψ(εy, 0)H(εy),(3.22)

This is exactly our stationary condition on K. Using (3.22), the equation of w1 becomes
simply

L0(w1) = µ̃−1Γbbj∂jU + σ−1 < H,
ξ̄

µ̃
+ Φ0 >

(
|1− U |p−2(1− U)− 1

)
.

This can be rewritten for convenience as

L0(w1) = µ̃−1Γbbj
[
∂jU − σ−1ξ̄j

(
|1− U |p−2(1− U)− 1

)]
+ σ−1 < H,Φ0 >

(
|1− U |p−2(1− U)− 1

)
(3.23)

Hence we can write
w1 = w1,1 + w1,2,(3.24)

with
w1,1 = µ̃−1 ΓbbjUj and w1,2 = σ−1〈H,Φ0〉U0.(3.25)

Here Uj is the unique smooth bounded function satisfying

L0Uj = ∂jU − σ−1 ξ̄j
(
|1− U |p−2(1− U)− 1

)
,

∫
RN

Uj ∂iU dξ̄ = 0, ∀ i = 1, . . . , N,

(3.26)

while U0 is the unique smooth bounded function such that

L0U0 =
(
|1− U |p−2(1− U)− 1

)
,

∫
RN

U0 ∂iU dξ̄ = 0, ∀ i = 1, . . . , N.(3.27)
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It follows immediately that w1 = w1(εy, ξ̄) is smooth bounded on its variable. Fur-
thermore, it is easily seen that Uj is odd on variable ξ̄j and is even on other variables.
Moreover, U0 has an explicit expression

U0 = − 1
pN

U + 1− p
2pN ξ̄ · ∇U.(3.28)

3.2.2. Expansion at second order in ε. We will now solve the equation S̃ε(w) = 0 up to
order ε2 by choosing the function w2 and the normal section Φ0 together. Suppose w
has the form (3.16), then

S̃ε(w) = ε2
(
∆RNw2 + p|U − 1|p−2(U − 1)w2

)
+ ε

(
ε2µ̃−2∆Ke− λ0e

)
Z

+ ε2F2 + ε2G2 +O(ε3),
where the terms F2 and G2 are respectively given by

F2 =− µ̃−1 Γbbj∂jw1 + ψ−1 〈∇Nψ(εy, 0),Φ1〉
(
|1− U |p−2(1− U)− 1

)
− µ̃−1 ΓcakΓacj ( ξ̄

k

µ̃
+ Φk

0)∂jU + µ̃−2
( ξ̄j
µ̃

∆K µ̃− 2∇K µ̃ · ∇KΦj
0 − µ̃∆KΦj

0

)
∂jU

+ h̃−1µ̃−2 ∆K h̃ U + 2(h̃µ̃2)−1∇K h̃ ·
( ξ̄j
µ̃
∇K µ̃− µ̃∇KΦj

0

)
∂jU

+
(
µ̃−2ξ̄i∇K µ̃−∇KΦi

0

)(
µ̃−2ξ̄j ∇K µ̃−∇KΦj

0

)
∂2
ijU

+ ψ−1 〈∇Nψ, ξ̄
µ̃

+ Φ0〉
(
(1− p)|U − 1|p−2w1

)
+ 1

2p h̃
−1 (∇N )2(ψ 1

p
)
(εy, 0)[ ξ̄

µ̃
+ Φ0,

ξ̄

µ̃
+ Φ0]

(
|1− U |p−2(1− U)− 1

)
+ 1

2p(p− 1)|U − 1|p−2w2
1 + 1

2p(p− 1)h̃−2〈∇N
(
ψ

1
p
)
,
ξ̄

µ̃
+ Φ0〉2

(
|1− U |p−2 − 1

)
and

G2 =− µ̃−1Γbbj e ∂jZ + ψ−1 ((1− p)|U − 1|p−2)〈∇N ψ, ξ̄
µ̃

+ Φ0〉eZ

+ 1
2p(p− 1)|U − 1|p−2

{
(w1 + eZ)2 − w2

1

}
.(3.29)

Hence the term of order ε2 vanishes (except the term ε
(
− ε2µ̃−2∆Ke+λ0e

)
Z) if and

only if w2 satisfies the equation
L0w2 = −F2 −G2.

By Freedholm alternative this equation is solvable if and only if F2 +G2 is L2 orthogonal
to the kernel of linearized operator L0, which is spanned by the functions ∂iU , i =
1, . . . , N .

It is convenient to write F2 as
F2 = ψ−1〈∇N ψ(εy, 0),Φ1〉

(
|1− U |p−2(1− U)− 1

)
+ F̃2.

The function F̃2 does not involve ψ and by (3.22) and arguing as for w1, we can write
w2 as

w2 = w2,1 + w2,2,

where w2,2 = σ−1〈H,ψ〉U0 solves the equation

L0w2,2 = σ−1〈H,Φ1〉
(
|1− U |p−2(1− U)− 1

)
,
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and w2,1 will solve the equation

L0w2,1 = −F̃2 −G2.

To solve the equation on w2,1 it is convenient to write

F̃2 = F̃2(Φ0) = S2,0 + S2(Φ0) +N2(Φ0),

where S2,0 = F̃2(0) does not involve Φ0, S2(Φ0) is the sum of linear terms of Φ0, and
N2(Φ0) is the nonlinear term of Φ0.

Recall that w1 = w1,1 + w1,2 with

w1,1 = µ̃−1 ΓbbjUj and w1,2 = σ−1〈H,Φ0〉U0.

Then

S2,0 = −µ̃−1 Γbbj ∂jw1,1 − µ̃−2 ΓcakΓacj(ξ̄k ∂jU)

+ µ̃−3∆K µ̃ ξ̄
j ∂jU + h̃−1µ̃−2∆K h̃ U + 2(h̃µ̃3)−1(∇K h̃ · ∇K µ̃)ξ̄j ∂jU

+ µ̃−4|∇K µ̃|2 (ξ̄i ξ̄j ∂2
ijU) + ψ−1 µ̃−1〈∇Nψ(εy, 0), ξ̄〉

(
(1− p)|U − 1|p−2)w1,1

+ 1
2ph̃

−1µ̃−2(∇N )2(ψ 1
p
)
[ξ̄, ξ̄]

(
|1− U |p−2(1− U)− 1

)
+ 1

2p(p− 1)|U − 1|p−2w2
1,1 + 1

2p(p− 1)h̃−2µ̃−2〈∇N
(
ψ

1
p
)
(εy, 0), ξ̄〉2

(
|1− U |p−2 − 1

)
,

S2(Φ0) = −µ̃−1Γbbj ∂jw1,2 − µ̃−1 ΓcakΓacjΦk
0 ∂jU

− µ̃−2
(
2∇K µ̃ · ∇KΦj

0 + µ̃∆KΦj
0

)
∂jU − 2(h̃µ̃)−1

(
∇K h̃ · ∇KΦj

0

)
∂jU

− 2µ̃−2
(
∇K µ̃ · ∇KΦj

0

)
(ξ̄i ∂2

ijU) + µ̃−1ψ−1〈∇Nψ, ξ̄〉
(
(1− p)|U − 1|p−2)w1,2

+ ψ−1〈∇Nψ,Φ0〉
(
(1− p)|U − 1|p−2)w1,1 + p− 1

p
σ−2µ̃−1〈H, ξ̄〉〈H,Φ0〉

(
|U − 1|p−2 − 1

)
+ ph̃−1µ̃−1(∇N )2(ψ 1

p
)
[Φ0, ξ̄]

(
|U − 1|p−2(1− U)− 1

)
+ p(p− 1)|U − 1|p−2w1,1w1,2

and

N2(Φ0) = (∇KΦi
0 · ∇KΦj

0) ∂2
ijU + ψ−1〈∇Nψ,Φ0〉

(
(1− p)|U − 1|p−2)w1,2

+ 1
2 p h̃

−1 (∇N )2(ψ 1
p
)
[Φ0,Φ0]

(
|U − 1|p−2(1− U)− 1

)
+ 1

2p(p− 1)|U − 1|p−2w2
1,2

+ 1
2
p− 1
p

σ−2〈H,Φ0〉2
(
|U − 1|p−2 − 1

)
.
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Using the stationary condition and (3.8), we have that∫
RN

S2(Φ0) ∂sU =− µ̃−1Γbbj
∫
RN

∂jw1,2 ∂sU − µ̃−1ΓcakΓacj Φk
0

∫
RN

∂jU ∂sU

− (µ̃)−2
(
2∇K µ̃ · ∇KΦj

0 + µ̃∆KΦj
0

) ∫
RN

∂jU ∂sU

− 2(h̃µ̃)−1
(
∇K h̃ · ∇KΦj

0

) ∫
RN

∂jU ∂sU − 2µ̃−2
(
∇K µ̃ · ∇KΦj

0

) ∫
RN

ξ̄i ∂2
ijU ∂sU

+ (p− 1)σ−1Hj
(
µ̃−1

∫
RN
|1− U |p−2ξ̄j w1,2 ∂sU + Φj

0

∫
RN
|U − 1|p−2w1,1 ∂sU

)
+ 1− p

p
µ̃−1σ−2H iHjΦj

0

∫
RN

(
|1− U |p−2(1− U)− 1

)
ξ̄i ∂sU

+ µ̃−1ψ−1∂2
ijψΦj

0

∫
RN

(
|1− U |p−2(1− U)− 1

)
ξ̄i ∂sU

+ p(p− 1)
∫
RN
|U − 1|p−2w1,1w1,2 ∂sU

+ (p− 1)
p

σ−2µ̃−1H iHjΦj
0

∫
RN

(
|1− U |p−2 − 1

)
ξ̄i ∂sU

We start first by computing the integrals involving w1,1 and w1,2 in the above formula.
Let us denote by A the sum of such terms. It can written as

A =
∫
RN

N0(w1)∂sU dξ +
∫
RN

N1(U,w1)∂sU dξ

where
N0(w1) := p(p− 1)|U − 1|p−2w1,1w1,2

and

N1(U,w1) := −µ̃−1Γbbj∂jw1,2 +(p−1)σ−1Hj
(
µ̃−1 |1−U |p−2ξ̄j w1,2 +Φj

0 |U−1|p−2w1,1
)
.

To compute the term A, we differentiate the equation (3.27) with respect to the
variable ξ̄j to obtain

L0(∂sU0) + p(p− 1)|U − 1|p−2U0∂sU = −(p− 1) |1− U |p−2∂sU.(3.30)

Multiplying the equation (3.26) by ∂sU0 and integrating by parts, we have∫
RN

L0(∂sU0)Uj =
∫
RN

[
∂jU − σ−1ξj

(
|1− U |p−2(1− U)− 1

)
︸ ︷︷ ︸

T (U)

]
∂sU0

On the other hand∫
RN

L0(∂sU0)Uj =
∫
RN

∂s(∆RNU0)Uj + p

∫
RN

{
|1− U |p−2(U − 1)Uj

}
∂sU0

= −
∫
RN

∆RNU0∂sUj − p
∫
RN

U0
{

(p− 1)|U − 1|p−2∂sUUj + |U − 1|p−2(U − 1)∂sUj
}

= −
∫
RN

L0(U0)∂sUj − p(p− 1)
∫
RN
|U − 1|p−2∂sUU0Uj .

It then follows that∫
RN
T (U)∂sU0 =

∫
RN

(
|1− U |p−2(1− U)− 1

)
∂sUj − p(p− 1)

∫
RN
|U − 1|p−2∂sUU0Uj

= −(p− 1)
∫
RN
|1− U |p−2Uj∂sU − p(p− 1)

∫
RN
|U − 1|p−2∂sUU0Uj .
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We deduce that∫
RN

N0(w1)∂sUdξ = µ̃−1σ−1 < H,Φ0 > Γaaj
(
−
∫
RN
T (U)∂sU0dξ − (p− 1)

∫
RN
|1− U |p−2Uj∂sU

)
= −µ̃−1σ−1 < H,Φ0 > Γaaj

∫
RN

[
∂jU − σ−1ξj

(
|1− U |p−2(1− U)− 1

)]
∂sU0

− µ̃−1σ−1 < H,Φ0 > Γaaj(p− 1)
∫
RN
|1− U |p−2Uj∂sU

= −µ̃−1σ−1 < H,Φ0 > Γaaj
∫
RN

∂jU∂sU0

+ µ̃−1σ−2 < H,Φ0 > Γaaj
∫
RN

ξj
(
|1− U |p−2(1− U)− 1

)
∂sU0

− µ̃−1σ−1 < H,Φ0 > Γaaj(p− 1)
∫
RN
|1− U |p−2Uj∂sU.

Furthemore∫
RN

N1(U,w1)∂sUdξ = −µ̃−1Γaaj
∫
RN

∂jw1,2∂sU

+ µ̃−1(p− 1)σ−1Hj
∫
RN
|1− U |p−2ξjw1,2∂sU

+ µ̃−1(p− 1)σ−1Hj Φj
0

∫
RN
|1− U |p−2w1,1∂sU

= −µ̃−1σ−1 < H,Φ0 > Γaaj
∫
RN

∂jU0∂sU

+ µ̃−1(p− 1)σ−2Hj < H Φ0 >

∫
RN
|1− U |p−2ξjU0∂sU

+ µ̃−1σ−1(p− 1) < H Φ0 > Γaaj
∫
RN
|1− U |p−2Uj∂sU.

Summarizing, we get∫
RN

N0(w1) +N1(U,w1)dξ = −2µ̃−1Γaajσ−1 < H,Φ0 >

∫
RN

∂jU0∂sU

+ µ̃−1σ−2 < H,Φ0 > Γaaj
∫
RN

ξj
(
|1− U |p−2(1− U)− 1

)
∂sU0

+ µ̃−1(p− 1)σ−2Hj < H Φ0 >

∫
RN
|1− U |p−2ξjU0∂sU.

Recall the expression of U0 given by

U0 = 1− p
2Np ξ · ∇U −

1
Np

U

we easily have∫
RN

∂jU0∂sUdξ =
∫
RN

∂sU ∂j
(1− p

2Np ξ.∇U −
1
Np

U
)

= − 1
Np

∫
RN
|∇U |2 + 1− p

2Np

∫
RN
|∇U |2 + 1− p

2Np

∫
RN

∂sU
(
ξ.∇(∂U

∂ξj
)
)

=
(
− 1
Np

+ 1− p
2Np + 1− p

2Np (−N2 )
) ∫

RN
|∇U |2

= − 1
2N σ

∫
RN
|∇U |2.
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Integrating by parts we get∫
RN

(
|U − 1|p−2(U − 1

)
+ 1

)
< ξ,∇U0 >

)
dξ = −(p− 1)

∫
RN
|U − 1|p−2U0 < ξ,∇U > dξ

− N

∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U0 dξ.

Therefore, from Formula (3.21) we obtain∫
RN

(
|U − 1|p−2(U − 1

)
+ 1

)
< ξ,∇U0 >

)
dξ + (p− 1)

∫
RN
|U − 1|p−2U0 < ξ,∇U > dξ

= −N
∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U0 dξ.

= 1
p

∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U dξ + (1− p)σ

2p

∫
RN
|∇U |2dξ.

Putting the above formulas together we get

A =
∫
RN

(
N0(w1) +N1(w1, U)

)
∂sU dξ

= −2µ̃−1Γaasσ−1 < H,Φ0 >
(
− 1

2N σ

∫
RN
|∇U |2dξ

)
+ µ̃−1Γaasσ−2 < H,Φ0 >

[1
p

∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U dξ + (1− p)σ

2p

∫
RN
|∇U |2dξ

]
= 1

N
µ̃−1Γaas < H,Φ0 >

∫
RN
|∇U |2dξ + 1

p
µ̃−1Γaasσ−2 < H,Φ0 >

∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U dξ

+ (1− p)
2p µ̃−1σ−1Γaaj < H,Φ0 >

∫
RN
|∇U |2dξ.

On the other hand, by direct computations yield∫
RN

∂jU ∂sU = δjs

∫
RN
|∂1U |2,∫

RN
∂2
kjU ξ̄

k∂sU = 1
2 δjs

∫
RN

ξ̄k∂k(∂jU)2 = −N2 δjs

∫
RN
|∂1U |2,

ΓcakΓacj Φk
0

∫
RN

∂jU ∂sU = ΓcakΓacs Φk
0

∫
RN
|∂1U |2.

Summarizing, we have∫
RN

S2(Φ0) ∂sU = −µ̃−1
{

∆KΦs
0 + ΓcakΓacs Φk

0 + (2−N)µ̃−1∇K µ̃ · ∇KΦs
0

+ (p− 1)
p

σ−1HsHjΦj
0 + 2h̃−1∇K h̃ · ∇KΦs

0 − ψ−1σ ∂2
sj(ψ)Φj

0

}∫
RN
|∇U |2

+ p− 1
p

µ̃−1σ−2HsHjΦj
0

∫
RN

(
|1− U |p−2 − 1

)
< ξ , ∇U > dξ

+
( 1
N
µ̃−1Γaas + (p− 1)

2p µ̃−1σ−1Hs
)
< H,Φ0 >

∫
RN
|∇U |2dξ

+ 1
p
µ̃−1Hs σ−2 < H,Φ0 >

∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U dξ.

Now, using the fact that

µ̃−1∇K µ̃ = p− 1
2p ψ−1∇Kψ and h̃−1∇K h̃ = 1

p
ψ−1∇Kψ.
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we obtain (recalling the definition of σ) that

(2−N)µ̃−1∇K µ̃ · ∇KΦs
0 + 2h̃−1∇K h̃ · ∇KΦs

0 = σ ψ−1∇Kψ · ∇KΦs
0.

Hence we summarize∫
RN

S2(Φ0) ∂sU = −µ̃−1
{

∆KΦs
0 + ΓcakΓacs Φk

0 + σ ψ−1∇Kψ · ∇KΦs
0

+ (p− 1)
p

σ−1Hs < H,Φ0 > −ψ−1σ ∂2
sj(ψ)Φj

0

}∫
RN
|∇U |2 dξ

+
(
p− 1

2p σ−1 − 1
N

)
µ̃−1Hs < H,Φ0 >

∫
RN
|∇U |2dξ + I

where I is explicitly given by

I := p− 1
p

µ̃−1σ−2Hs < H,Φ0 >

∫
RN

(
|1− U |p−2 − 1

)
< ξ , ∇U > dξ

+ 1
p
µ̃−1σ−2Hs < H,Φ0 >

∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U dξ

A straightforward computations imply that

I = 1
p
µ̃−1σ−2Hs < H,Φ0 >

[
(p− 1)

∫
RN

(
|1− U |p−2 − 1

)
< ξ , ∇U > dξ

+
∫
RN

(
|U − 1|p−2(U − 1) + 1

)
U dξ

]
= 1
p
µ̃−1σ−2Hs < H,Φ0 >

[
p

∫
RN

Udξ
]

= µ̃−1σ−1

N
Hs < H,Φ0 >

∫
RN
|∇U |2dξ.

On the other hand, recalling the expression of σ we have that

−(p− 1)
p

σ−1 + (p− 1)
2p σ−1 − 1

N
+ 1
N
σ−1 = − 1

Np
σ−1.

We deduce that∫
RN

S2(Φ0) ∂sU = −µ̃−1
{

∆KΦs
0 + ΓcakΓacs Φk

0 + σ ψ−1∇Kψ · ∇KΦs
0

+ σ−1

Np
HsHjΦj

0 − ψ
−1σ ∂2

sj(ψ)Φj
0

}∫
RN
|∇U |2 dξ.

Let now, JK : NK 7→ NK be a linear operator from the family of smooth sections of
the normal bundle, NK, of K into itself, whose components are given by

(3.31) (JKΦ0)s = ∆KΦs
0 + ΓcakΓacs Φk

0 + σ

ψ
∇Kψ · ∇KΦs

0 + σ−1

Np
HsHjΦj

0−
σ

ψ
∂2
sj(ψ)Φj

0.

It then follows that∫
RN

S2(Φ0) ∂sU = −µ̃−1 (JKΦ0
)s(εy)

∫
RN
|∇U |2.(3.32)

On the other hand, it is easy to check that∫
RN

S2,0 ∂sU = 0 =
∫
RN

N2(Φ0) ∂sU.(3.33)
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Moreover, by the stationary condition (3.22) and recalling the expression of w11 in (3.25)
we have that∫
RN

G2 ∂sU =
{
− µ̃−1Γbbs

∫
RN

∂sZ ∂sU + µ̃−1ψ−1(1− p)∂sψ
∫
RN
|1− U |p−2ξ̄s Z ∂sU

+ p(p− 1)
∫
RN
|U − 1|p−2w1,1Z ∂sU

}
e

= −µ̃−1Γbbse
∫
RN

{
∂sZ + σ−1(1− p)|1− U |p−2Z ξ̄s − p(p− 1)|1− U |p−2Z Us

}
∂sU

= c0µ̃
−1Γbbse.

Collecting the above formulas together, we see that the solvability of equation on w2
is equivalent to the solvability of following equation on Φ0

(3.34) JKΦ0 = H2(ȳ; e),

where H2(ȳ; e) = c0He is a smooth bounded function. This equation is solvable by our
non-degeneracy condition on K. Moreover, it is easy to check that Φ0 = Φ0(ȳ; e) is a
smooth bounded function on ȳ and is Lipschitz continuous with respect to e.

We now go back to the equation of w2,1

L0w2,1 = −F̃2 −G2.

Since F̃2 and G2 are smooth bounded functions of (εy, ξ̄), then w2,1 = w2,1(εy, ξ̄) is
also a smooth bounded function of (εy, ξ̄). Moreover, w2,1 = w2,1(εy, ξ̄; e) is Lipschitz
continuous with respect to e.

3.2.3. Higher order approximations. To solve the equation up to an error of order εj+1

for some j ≥ 3, we use an iterative scheme of Picard’s type and we argue as in the
previous steps. We assume that all the functions wi’s (1 ≤ i ≤ j − 1) are constructed.
The function wj will be chosen to solve an equation similar to that of w2 (with obvious
modifications) by solving an equation of Φj−2 similar to that of Φ0. More precisely, we
have

S̃ε(v) = εj
(
∆RNwj + |U − 1|p−2(U − 1)wj

)
+ ε

(
ε2µ̃−2∆Ke− λ0e

)
Z

+ εjFj + εjEj eZ + εjAij(εy, ξ̄; Φ0, · · · ,Φj−3) e ∂iZ
+ εjBi`j (εy, ξ̄; Φ0, · · · ,Φj−3) e ∂2

i`Z + εjCij(εy, ξ̄; Φ0, · · · ,Φj−3) · ∇Ke ∂iZ
+ εjDabj (εy, ξ̄; Φ0, · · · ,Φj−3) ∂2

abeZ +O(εj+1),

with

Fj =− µ̃−1Γbbl ∂lwj−1 − µ̃−1ΓcakΓacs Φk
j−2 ∂sU − µ̃−2

(
2∇K µ̃ · ∇KΦs

j−2 + µ̃∆KΦs
j−2

)
∂sU

− 2(h̃µ̃)−1
(
∇K h̃ · ∇KΦs

j−2

)
∂sU − 2µ̃−2

(
∇K µ̃ · ∇KΦs

j−2

)
(ξ̄i ∂2

isU)

+ ψ−1〈∇Nψ,Φ0〉
(
(1− p)|U − 1|p−2)wj−1 + ψ−1〈∇Nψ,Φj−2〉

(
(1− p)|U − 1|p−2)w1

+ ψ−1〈∇Nψ,Φj−1〉
(
|U − 1|p−2(1− U)− 1

)
+ ψ−1〈∇Nψ, ξ̄

µ̃
〉
(
(1− p)|U − 1|p−2)wj−1

+ pµ̃−1h̃−1∂2
kl

(
ψ

1
p
)
(εy, 0) Φl

j−2 ξ̄
k (|U − 1|p−2(1− U)− 1

)
+ p(p− 1)|U − 1|p−2w1wj−1 +Gj(εy, ξ̄;w0, · · · , wj−2,Φ0, · · · ,Φj−3)

= ψ−1〈∇Nψ,Φj−1〉
(
|1− U |p−2(1− U)− 1

)
+ F̃j
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and
Ej = p(p− 1)|U − 1|p−2wj−1 + ψ−1〈∇Nψ,Φj−2〉+ Ẽj(εy, ξ̄; Φ0, · · · ,Φj−3),

where Aij , Bi`j , Cij , Dabj and Ẽj are smooth bounded functions on their variables.
Except for ε

(
− ε2µ̃−2∆Ke + λ0e

)
Z, the term of order εj vanishes if and only if wj

satisfies the equation
L0wj = −Fj − Ej eZ −Aij(εy, ξ̄; Φ0, · · · ,Φj−3) e ∂iZ − Bi`j (εy, ξ̄; Φ0, · · · ,Φj−3) e ∂2

i`Z

− Cij(εy, ξ̄; Φ0, · · · ,Φj−3) · ∇Ke ∂iZ −Dabj (εy, ξ̄; Φ0, · · · ,Φj−3) ∂2
abeZ.

As for the previous steps, by Freedholm alternative the above equation is solvable if
and only if the right hand side is L2 orthogonal to the kernel of linearized operator L0.
Recall first that, similar argument as for w1 and w2 yields that

wj−1 = wj−1,1 + σ−1〈H,Φj−2〉U0,

where wj−1,1 ⊥ ∂iU is a function which does not involve Φj−2. So, we look for a solution
wj of the form

wj = wj,1 + σ−1〈H,Φj−1〉U0,

with wj,1 ⊥ ∂iU solves

L0wj,1 = −F̃j − Ej eZ −Aij(εy, ξ̄; Φ0, · · · ,Φj−3) e ∂iZ − Bi`j (εy, ξ̄; Φ0, · · · ,Φj−3) e ∂2
i`Z

− Cij(εy, ξ̄; Φ0, · · · ,Φj−3) · ∇Ke ∂iZ −Dabj (εy, ξ̄; Φ0, · · · ,Φj−3) ∂2
abeZ.

Since j ≥ 3, we can write

F̃j = F̃j(Φj−2) = Sj,0 + Sj(Φj−2),

where Sj,0 = Sj,0(εy, ξ̄; Φ0, · · · ,Φj−3) does not involve Φj−2, and Sj(Φj−2) is the sum
of linear terms of Φj−2. Since∫

RN
Sj(Φj−2) ∂sU = −µ̃−1( ∫

RN
|∂1U |2

)
(JKΦj−2)s(εy),(3.35)

the equation on wj,1 (and then on wj) is solvable if and only if Φj−2 satisfies an equation
of the form

JKΦj−2 = Hj(ȳ; Φ0, · · · ,Φj−3, e).
This latter equation is solvable by the non-degeneracy condition on K. Moreover, for
any given e, by induction method one can get Φj−2 = Φj−2(ȳ; e) is a smooth bounded
function on ȳ and is Lipschitz continuous with respect to e. When this is done, since
the right hand side of equation of wj,1 is a smooth bounded function of (εy, ξ̄), we see
at once that wj,1 = wj,1(εy, ξ̄) is a smooth bounded function of (εy, ξ̄). Furthermore,
wj,1 = wj,1(εy, ξ̄; e) is Lipschitz continuous with respect to e.

As a summary, given any positive integer I ≥ 3 and let vI be the local approximate
solution constructed above. Namely,

vI(y, ξ̄) = U(ξ̄) +
I∑
`=1

ε`w`(εy, ξ̄) + εe(εy)Z(ξ̄).(3.36)

We have that
S̃ε(vI) = ε

(
− ε2µ̃−2∆Ke+ λ0e

)
Z + εI+1F̃I+1 + εI+1EI+1 eZ

+ εI+1AiI+1(εy, ξ̄; e) e ∂iZ + εI+1Bi`I+1(εy, ξ̄; e) e ∂2
i`Z(3.37)

+ εI+1CiI+1(εy, ξ̄; e) · ∇Ke ∂iZ + εI+1DabI+1(εy, ξ̄; e) ∂2
abeZ +O(εI+2),
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where

FI+1 =− µ̃−1Γbbl ∂lwI − µ̃−1ΓcakΓacs Φk
I−1 ∂sU − µ̃−2

(
2∇Kµ · ∇KΦs

I−1 + µ̃∆KΦs
I−1

)
∂sU

− 2(h̃µ̃)
−1(
∇Kh · ∇KΦs

I−1

)
∂sU − 2µ̃−2

(
∇K µ̃ · ∇KΦs

I−1

)
(ξ̄i ∂2

isU)

+ ψ−1〈∇Nψ,Φ0〉
(
(1− p)|U − 1|p−2)wI + ψ−1〈∇Nψ,ΦI−1〉

(
(1− p)|U − 1|p−2)w1

+ ψ−1〈∇Nψ, ξ̄
µ̃
〉
(
(1− p)|U − 1|p−2)wI + p(p− 1)|U − 1|p−2w1wI

+ pµ̃−1h̃−1∂2
kl

(
ψ

1
p
)
(εy, 0) Φl

I−1 ξ̄
k (|U − 1|p−2(1− U)− 1

)
+GI+1(εy, ξ̄; Φ0, · · · ,Φj−3)

and

EI+1 = p(p− 1)|U − 1|p−2wI + ψ−1〈∇Nψ,ΦI−1〉+ Ẽj(εy, ξ̄; Φ0, · · · ,Φj−3),

and AiI+1, Bi`I+1, CiI+1, DabI+1, ẼI+1 and GI+1 are smooth bounded functions on their
variables and are Lipschitz continuous with respect to e.

3.3. Global approximation. Let vI be the local approximate solution constructed in
the previous subsection and define

vI(y, ξ) = h(εy)wI(y, ξ̄),

in the Fermi coordinate system. Since K is compact, by the definition of Fermi coordi-
nate, there is a constant δ > 0 such that the normal coordinate x on Kε is well defined
for |x| < 1000δ/ε. We define a global approximation by

(3.38) W (z) = ηε3δ(x)vI(y, ξ) for z ∈ Ωε,

where ηε`δ(x) := η( ε|x|`δ ) and η is a nonnegative smooth cut-off function such that

η(t) = 1 if |t| < 1 and η(t) = 0 if |t| > 2.

It is easy to see that W has the concentration property as required. Note that W
depends on the parameter functions ΦI−1 and e, thus we can write W = W ( · ; ΦI−1, e)
and define the configuration space of (ΦI−1, e) by

Λ :=

(ΦI−1, e)
∣∣∣ ‖ΦI−1‖C0,α(K) + ‖∇ΦI−1‖C0,α(K) + ‖∇2ΦI−1‖C0,α(K) ≤ 1,

‖e‖C0,α(K) + ε‖∇e‖C0,α(K) + ε2‖∇2e‖C0,α(K) ≤ 1

 .
(3.39)

Clearly, the configuration space Λ is infinite dimensional.
For (ΦI−1, e) ∈ Λ, it is not difficult to show that for any 0 < τ < 1, there is a positive

constant C (independent of ε, ΦI−1, e) such that

(3.40) |wI(y, ξ̄)| ≤ Ce−τ |ξ̄|, ∀ (y, ξ̄) ∈ Kε × RN .

4. Proof of the Theorem 1.1

To prove Theorem 1.1, we will apply a technique already employed in many papers
and which is based on the so-called infinite dimensional reduction. This technique is
in some sense a generalization of the classical Lyapunov-Schmidt reduction method in
an infinite dimensional setting. It has been used in many constructions in PDE and
geometric analysis. We present here the main ideas referring to [12, 36, 39] and some
references therein.
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4.1. Infinite dimensional reduction method. In general there are two different
approaches to set-up the problem: a first one used in [12] and [39] and a second one
used in [29, 31]. Here we will present an approach which is slightly different from those.

Given (ΦI−1, e) ∈ Λ and let W be the global approximate solution defined in (3.38).
Our aim is to prove, applying an infinite dimensional reduction method, that there exist
ΦI−1 and e such that a small perturbation of the global approximation W give a true
solution of our problem.

Let uε(εy) be the function defined in Lemma 3.1 and define the following quantities
E := ∆gW + |W + uε(εy)|p − |uε(εy)|p,

Lε[Ψ] := ∆gΨ + p|W − 1|p−2(W − 1)Ψ,
and

N(Ψ) := |W + Ψ− q(εy, εx)|p − |W − q(εy, εx)|p − p|W − 1|p−2(W − 1)Ψ.

Clearly, W + Ψ is a solution of equation (3.4) if and only if
Lε[Ψ] + E +N(Ψ) = 0.(4.1)

To solve (4.1), we use an argument that has been in several papers, see for instance
[12, 15, 36, 39] and some references therein. This argument called gluing technique
consists in looking for a solution Ψ of the form

Ψ := ηε3δΨ] + Ψ[,

where Ψ[ : Ωε → R and Ψ] : Kε×RN → R and where ηδ is a cut-off function defined in
the previous subsection. An easy computation yields[
− ηε3δ∆Ψ] − ηε3δp|W − 1|p−2(W − 1)Ψ] − ηεδN(ηε3δΨ] + Ψ[)− ηεδE − pηεδ |W − 1|p−2(W − 1)Ψ[]
+
[
−∆Ψ[ − p(1− ηεδ)|W − 1|p−2(W − 1)Ψ[ − (1− ηεδ)N(ηε3δΨ] + Ψ[)− (1− ηεδ)E
− 2∇ηε3δ∇Ψ] −∆ηε3δΨ]] = 0.

Therefore, Ψ is a solution of (4.1) if the pair (Ψ[,Ψ]) satisfies the following coupled
system: −η

ε
3δLε(Ψ]) = ηεδ

[
N(ηε3δΨ] + Ψ[) + E + p|W − 1|p−2(W − 1)Ψ[

]
L[ε[Ψ[] = 2∇ηε3δ∇Ψ] + ∆ηε3δΨ] + (1− ηεδ)

[
N(ηε3δΨ] + Ψ[) + E

]
.

(4.2)

where L[ε[Ψ[] is the linear operator defined by

(4.3) L[ε[Ψ[] := −∆Ψ[ − p(1− ηεδ)|W − 1|p−2(W − 1)Ψ[ on Ωε,

Then, in the support of ηε3δ, we define

Ψ] := h(εy)Ψ∗(y, ξ̄), with Ψ∗ : Kε × RN → R.

A straightforward computations yields

ηε3δ

(
∆gΨ] + p|W − 1|p−2(W − 1)Ψ]

)
=

ηε3δh
p
(
∆RNΨ∗ + µ−2∆KεΨ∗ + p|ηε3δvI − 1|p−2(ηε3δvI − 1)Ψ∗ + B̃[Ψ∗]

)
.

where B̃ = O(ε) is a linear operator defined in Subsection 3.1. Now we extend B̃ to
Kε × RN by defining

Lε[Ψ∗] := ∆RNΨ∗ + µ−2∆KεΨ∗ + p|ηε3δvI − 1|p−2(ηε3δvI − 1)Ψ∗ + ηε6δB̃[Ψ∗] on Kε × RN ,
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and

L∗ε[Ψ∗] := ∆RNΨ∗ + µ−2∆KεΨ∗ + p|U − 1|p−2(U − 1)Ψ∗ = −L0[Ψ∗] + µ−2∆KεΨ∗ on Kε × RN .

Since ηε3δ · ηεδ = ηεδ and ηε3δ · ηε6δ = ηε3δ, then Ψ is a solution of (4.1) if the pair (Ψ[,Ψ∗)
solves the following coupled system:
L[ε[Ψ[] = 2∇ηε3δ∇(hΨ∗) + ∆ηε3δhΨ∗ + (1− ηεδ)

[
N(ηε3δhΨ∗ + Ψ[) + E

]
,

L∗ε[Ψ∗] = −ηεδ h−p
[
E +N(ηε3δhΨ∗ + Ψ[) + p|W − 1|p−2(W − 1)Ψ[

]
− (Lε − L∗ε)[Ψ∗].

It is easy to check that

(∆gη
ε
3δ)hΨ∗ + 2∇gηε3δ · ∇g(hΨ∗) = (1− ηεδ)

[
(∆gη

ε
3δ)hΨ∗ + 2∇gηε3δ · ∇g(hΨ∗)

]
and

(1− ηεδ) = (1− ηεδ)(1− ηεδ/2).

Now, we define

Nε(Ψ[,Ψ∗,ΨI−1, e) := (∆gη
ε
3δ)hΨ∗ + 2∇gηε3δ · ∇g(hΨ∗)

+ (1− ηεδ/2)
[
E +N(ηε3δΨ] + Ψ[)

]
,

and

Mε(Ψ[,Ψ∗,ΨI−1, e) := −ηεδ h−p
[
E +N(ηε3δhΨ∗ + Ψ[) + p|W − 1|p−2(W − 1)Ψ[

]
− (Lε − L∗ε)[Ψ∗].

With this definitions in mind we conclude that W + Ψ is a solution of equation (3.4) if
(Ψ[,Ψ∗,ΦI−1, e) solves the following system:

(4.4)

L
[
ε[Ψ[] = (1− ηεδ)Nε(Ψ[,Ψ∗,ΦI−1, e),

L∗ε[Ψ∗] =Mε(Ψ[,Ψ∗,ΦI−1, e).

To solve the above system (4.4), we first study the linear theory : we prove the
invertibility of the operator L[ε namely we have the solvability of equation L[ε[Ψ[] = Ψ.
On the other hand, one can check at once that L∗ε has bounded kernels, e.g., ∂jU ,
j = 1, . . . , N . Actually, since L0 has a negative eigenvalue λ0 with the corresponding
eigenfunction Z, there may be more bounded kernels of L∗ε.

Let Ψ be a function defined on Kε × RN , we define Π to be the L2(dξ̄)-orthogonal
projection on ∂jU ’s and Z, namely

(4.5) Π[Ψ] :=
(
Π1[Ψ], . . . ,ΠN [Ψ],ΠN+1[Ψ]

)
,

where for j = 1, . . . , N ,

Πj [Ψ] := 1
c0

∫
RN

Ψ(y, ξ̄) ∂jU(ξ̄) dξ̄, with c0 =
∫
RN
|∂1U |2 dξ̄,

and
ΠN+1[Ψ] :=

∫
RN

Ψ(y, ξ̄)Z(ξ̄) dξ̄.
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Let us also denote by Π⊥ the orthogonal projection on the orthogonal of ∂jU ’s and Z,
namely

Π⊥[Ψ] := Ψ−
N∑
j=1

Πj [Ψ] ∂jU −ΠN+1[Ψ]Z.

With these notations, as in the Lyapunov-Schmidt reduction, solving the system (4.4)
amounts to solving the system

(4.6)



L[ε[Ψ[] = (1− ηεδ)Nε(Ψ[,Ψ∗,ΦI−1, e),

L∗ε[Ψ∗] = Π⊥
[
Mε(Ψ[,Ψ∗,ΦI−1, e)

]
,

Π
[
Mε(Ψ[,Ψ∗,ΦI−1, e)

]
= 0.

It is to see that one can write

E = ηε3δ h
p S̃ε(vI) + (∆gη

ε
3δ)(hvI) + 2(∇gηε3δ) · ∇g(hvI) + ηε3δ

[
|uε(εy)|p − |hvI − uε(εy)|p

]
.

Hence by (3.37),

Mε(Ψ[,Ψ∗,ΦI−1, e) =ε
(
ε2µ−2∆Ke− λ0e

)
Z + εI+1SI+1(ΦI−1)

+ εI+1GI+1(εy, ξ̄; e) + εI+2JI+1(εy, ξ̄; ΦI−1, e)

− ηεδ h−p
[
N(ηε3δhΨ∗ + Ψ[) + p|W − 1|p−2(W − 1)Ψ[

]
− (Lε − L∗ε)[Ψ∗].

On the other hand, since∫
RN

SI+1(ΦI−1) ∂sU = c0µ
−1(JKΦI−1)s(εy),(4.7)

by some rather tedious and technical computations, one can show that

Π
[
Mε(Ψ[,Ψ∗,ΦI−1, e)

]
= 0⇐⇒

 εI+1JK [ΦI−1] = εI+1HI+1(ȳ; e) +Mε,1(Ψ[,Ψ∗,ΦI−1, e);

εKε[e] =Mε,2(Ψ[,Ψ∗,ΦI−1, e),

(4.8)

where HI+1(ȳ; e) is a smooth bounded function on ȳ and is Lipschitz continuous with
respect to e, JK is the Jacobi operator on K, and Kε is a Schrödinger operator defined
by
(4.9) Kε[e] := ε2∆Ke− λ0µ

2e

where λ0 is the unique negative eigenvalue of L0.
We summarize the above discussion by saying that the function

u = W ( · ; ΦI−1, e) + ηε3δ hΨ∗ + Ψ[,

is a solution of the equation
∆gu+ |u− q(εz)|p − |q(εz)|p = 0,

if the functions Ψ[, Ψ∗, ΦI−1 and e satisfy the following system

(4.10)



L[ε[Ψ[] = (1− ηεδ)Nε(Ψ[,Ψ∗,ΦI−1, e),

L∗ε[Ψ∗] = Π⊥
[
Mε(Ψ[,Ψ∗,ΦI−1, e)

]
,

εI+1JK [ΦI−1] = εI+1HI+1(ȳ; e) +Mε,1(Ψ[,Ψ∗,ΦI−1, e),

εKε[e] =Mε,2(Ψ[,Ψ∗,ΦI−1, e).
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Once the system (4.10) is solved, one can prove the positivity of u by contradiction
since both Ψ[ and Ψ∗ are small.

4.2. Mapping properties of the linear operators. The main aim of this subsection
is to solve system (4.10) using a fixed point theorem. The first main ingredient in doing
this is to develop a linear theory for the linear operators appearing in system (4.10) .
We will study them one by one.

4.2.1. Analysing the linear operator L[ε. To deal with the term −ηεδ ph−p|W−1|p−2(W−
1)Ψ[ in Mε(Ψ[,Ψ∗,ΦI−1, e) in applying a fixed point theorem, one needs to choose
norms with the property thatMε(Ψ[,Ψ∗,ΦI−1, e) depends slowly on Ψ[. To this end,
we define

(4.11) ‖Ψ[‖ε,∞ = ‖(1− ηεδ/4)Ψ[‖∞ + 1
ε
‖ηεδ/4Ψ[‖∞.

With this notation, by the exponential decay of W , we have
‖Mε(Ψ[,Ψ∗,ΦI−1, e)‖∞ ≤ Cε‖Ψ[‖ε,∞

and
‖Mε(Ψ[

1,Ψ∗,ΦI−1, e)−Mε(Ψ[
2,Ψ∗,ΦI−1, e)‖∞ ≤ Cε‖Ψ[

1 −Ψ[
2‖ε,∞.

We have the following lemma.

Lemma 4.1. For any function Ξ(z) ∈ L∞(Mε), there is a unique bounded solution Ψ
of
(4.12) L[ε[Ψ] = (1− ηεδ)Ξ.
Moreover, there exists a constant C > 0 (independent of ε) such that
(4.13) ‖Ψ‖ε,∞ ≤ C‖Ξ‖∞.

For Ψ[ ∈ C0,α
0 (Mε), we define

(4.14) ‖Ψ[‖ε,α = ‖(1− ηεδ/4)Ψ[‖
C0,α

0
+ 1
ε
‖ηεδ/4Ψ[‖

C0,α
0
.

As a consequence of standard elliptic estimates, the following lemma holds.

Lemma 4.2. For any function Ξ ∈ C0,α
0 (Mε), there is a unique solution Ψ ∈ C2,α

0 (Mε)
of
(4.15) L[ε[Ψ] = (1− ηεδ)Ξ.
Moreover, there exists a constant C > 0 (independent of ε) such that
(4.16) ‖Ψ‖2,ε,α := ‖Ψ‖ε,α + ‖∇Ψ‖ε,α + ‖∇2Ψ‖ε,α ≤ C‖Ξ‖C2,α

0 (Mε).

4.2.2. Studying the model linear operator L∗ε. We will first prove an injectivity result
for L∗ε. Using this we obtain some a priori estimates and existence result for solutions
of L∗ε[Ψ] = Ξ under the orthogonality conditions Π[Ψ] = 0 = Π[Ξ]. We have the validity
of following lemma.

Lemma 4.3 (The injectivity result). Suppose that Ψ ∈ L∞(Kε×RN ) satisfies L∗ε[Ψ] = 0
and Π[Ψ] = 0. Then Ψ ≡ 0.

Proof. We first mention that a bounded solution Ψ of L∗ε[Ψ] = 0 decays exponentially
in the variables ξ̄. This follows from the exponential decay of U(ξ̄) and the maximum
principle. Then one can define

f(y) :=
∫
RN

Ψ2(y, ξ̄) dξ̄, ∀ y ∈ Kε.
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Our aim is to prove that f is identically equal to zero. We first recall the following
inequality

(4.17)
∫
RN

{
|∇ξ̄Ψ|

2 + p|U − 1|p−2(1− U)Ψ2
}
dξ̄ ≥ γ0

∫
RN

(
Ψ2 + |∇ξ̄Ψ|

2) dξ̄
with γ0 > 0 independent of ε > 0, see (4.9) in [7] for the proof. This together with the
fact that L∗ε[Ψ] = 0 and Π(Ψ) = 0 yield

∆Kεf =
∫
RN

2Ψ∆KεΨ dξ̄ +
∫
RN

2|∇KεΨ|2 dξ̄

= 2µ2
∫
RN

{
|∇ξ̄Ψ|

2 − p|U − 1|p−2(U − 1)Ψ2
}
dξ̄ + 2

∫
RN
|∇KεΨ|2 dξ̄

≥ 2µ2γ0

∫
RN

(
Ψ2(y, ξ̄) + |∇ξ̄Ψ(y, ξ̄)|2

)
dξ̄,

≥ 2µ2γ0

∫
RN

Ψ2(y, ξ̄) dξ̄ = 2µ2γ0f.

Integrating the above inequality and using the fact that f is nonnegative and Kε is
compact, we get f ≡ 0. Notice that if Kε is non compact, one can first show that f
goes to zero at infinity by the comparison theorem and then get f ≡ 0 by the maximum
principle. �

Remark 4.1. Actually, following the argument of proof of Lemma 3.7 in [36], one can
show that

Ψ =
N∑
j=1

cj(y) ∂jU + cN+1(y)Z,(4.18)

if Ψ is a bounded solution of L∗ε[Ψ] = 0, where cj(y) (j = 1, . . . , N) can be any bounded
function, but cN+1(y) must satisfy the equation

(4.19) ∆Kεc
N+1 = λ0µ

2cN+1.

It is worth mentionning that (4.19) is just another form of Kε[e] = 0. When ε satisfies
some gap condition (cf. Proposition 4.3 below), equation (4.19) does not have a bounded
solution.

Moreover, one can show that under the orthogonal conditions Π[Ψ] = 0, the linear
operator L∗ε has only negative eigenvalues λεj’s and there exists a constant c0 such that

λεj ≤ −c0 < 0.

We next prove a subjectivity result for L∗ε. Before stating it, we define the following
wighted Hölder norm (one can also use weighted Sobolev norms)

‖Ψ‖ε,α,ρ := sup
(y,ξ̄)∈Kε×RN

eρ|ξ̄|‖Ψ‖C0,α(B1((y,ξ̄))),

for small positive constants α and ρ. The following result hold true.

Proposition 4.1 (The surjectivity result). For any function Ξ with ‖Ξ‖α,σ < ∞ and
Π[Ξ] = 0, the problem
(4.20) L∗ε[Ψ] = Ξ
has a unique solution Ψ with Π[Ψ] = 0. Moreover, the following estimate holds:

‖Ψ‖2,ε,α,ρ := ‖Ψ‖ε,α,ρ + ‖∇Ψ‖ε,α,ρ + ‖∇2Ψ‖ε,α,ρ ≤ C‖Ξ‖ε,α,ρ,(4.21)
where C is a constant independent of ε.
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4.2.3. Non-degeneracy condition and invertibility of JK .

Proposition 4.2. Suppose that K is non-degenerate, then for any Φ̃ ∈ (C0,α(K))N ∩
NK, there exists a unique Φ ∈ (C2,α(K))N ∩NK such that
(4.22) JK [Φ] = Φ̃
with the property
(4.23) ‖Φ‖2,α := ‖Φ‖C0,α(K) + ‖∇Φ‖C0,α(K) + ‖∇2Φ‖C0,α(K) ≤ C‖Φ̃‖C0,α(K),

where C is a positive constant depending only on K.

Proof. Since the Jacobi operator JK is self-adjoint, this result follows from the standard
elliptic estimates, cf. [18, 22]. �

4.2.4. Gap condition and invertibility of Kε.

Proposition 4.3. There is a sequence ε = εj ↘ 0 such that for any ϕ ∈ C0,α(K), there
exists a unique e ∈ C2,α(K) such that
(4.24) Kε[e] = ϕ

with the property
(4.25) ‖e‖∗ := ‖e‖C0,α(K) + ε‖∇e‖C0,α(K) + ε2‖∇2e‖C0,α(K) ≤ Cε−3k‖ϕ‖C0,α(K),

where C is a positive constant independent of εj.

Proof. The proof relies of various considerations on the asymptotic behaviour of the
small eigenvalues of Kε, and Weyl’s asymptotic formula. In fact, consider the eigenvalue
problem

Kεe = λe in K.
For any ε > 0, the eigenvalues are given by a sequence λj(ε), characterized by the
Courant-Fisher formulas: if Mj (resp.Mj−1) represents the family of j dimensional
(resp. j − 1 dimensional) subspaces of H2(K), then

λj(ε) = sup
M∈Mj−1

inf
e∈M⊥\{0}

Qε(e, e)

= inf
M∈Mj

sup
e∈M⊥\{0}

Qε(e, e).(4.26)

where we have set
Qε(e, e) =

∫
K Kεe.e∫
K |e|2

and ⊥ denotes orthogonality with respect to the L2-scalar product. We have the fol-
lowing result.

Lemma 4.4. There exits a number ε∗ > 0 , such that for all 0 < ε1 < ε2 < ε∗, and all
j ≥ 1 and for some γ−, γ+ > 0, the following inequalities hold.

(4.27) (ε2 − ε1) γ−
2ε22
≤ ε−1

2 λj(ε2)− ε−1
1 λj(ε1) ≤ 2(ε2 − ε1)γ+

ε21

In particular, the functions ε ∈ (0, ε∗) −→ λj(ε) are continuous.

Proof. We prove that, for 0 < ε1 < ε2 and e such that
∫
K e

2 = 1, we have

ε−1
1 Qε1(e, e) + (ε2 − ε1) γ−

2ε22
≤ ε−1

2 Qε2(e, e) ≤ ε−1
1 Qε1(e, e) + (ε2 − ε1)2γ+

ε21

γ−, γ+ > 0. From this and formulas (4.26) estimate (4.27) follows at once. �

As a consequence we get
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Corollary 4.1. There exists a number δ > 0 such that for any ε2 > 0 and j such that
ε2 + |λj(ε2)| < δ

and any ε1 with 1
2ε2 ≤ ε1 < ε2, we have that :

λj(ε1) < λj(ε2).

Proof. Let us consider small numbers ε1 ≥ ε2
2 , Then from (4.27) we find that:

λj(ε1) ≥ λj(ε2) + ε1 − ε2
ε2

[
λj(ε2) + δ

ε1
ε2

]
where δ > 0. From here the desired result immediately follows. �

Let us consider the numbers εl := 2−l for large l ≥ 1. Define the sets

(4.28) Fl :=
{
εl ∈ (εl+1, εl); kerKε 6= {0}

}
if ε ∈ Fl then for some j we have that, λj(ε) = 0, It follows that λj(εl+1) < 0. Indeed,
let us assume the opposite. Then, given δ > 0, the continuity of ε → λj(ε) implies the
existence of ε̃ with 1

2ε ≤ ε̃ < ε and 0 ≤ λj(ε̃) < δ. If δ is chosen as in the above Corollary,
and l is large enough so that 2−l < δ, we obtain a contradiction. As a consequence, for
all l large enough
(4.29) Card(Fl) ≤ N(εl+1)
where N(ε) denotes the number of negative eigenvalues of Kε. Our next task is then
to estimate this number of negative eigenvalues for ε sufficiently small. For this aim we
consider for a+ > 0 such that a+ > λ1, the following model operator

(4.30) K+
ε := −∆K −

a+
ε
.

Let λ+
j (ε) denote its eigenvalues. From the Courant-Fisher characterization we see

that λj(ε) ≤ λ+
j (ε) for small j and ε. Therefore, N(ε) ≤ N+(ε), where N+(ε) desig-

nates the number of negative eigenvalues of K+
ε . Let us denote by µj the eigenvalues of

−∆K(ordinates and counted with their multiplicity). Then Weyl’s asymptotic formula
there exists a constant CK > 0, depending only on k = dimK such that

(4.31) µj = CKj
2
k + o(j

2
k ) as j →∞.

Using the fact that λ+
j (ε) = µj − a+

ε and (4.31), we then find that

(4.32) N+(ε) = Cε−
k
2 + o(ε−

k
2 ) quand ε→∞

As a conclusion, using (4.29) we find

(4.33) Card(Fl) ≤ N(εl+1) ≤ Cε−
k
2

l+1 ≤ C2
lk
2 .

Hence there exists an interval (al, bl) ⊂ (εl+1εl) such that al, bl ∈ Fl,Ker(Kε) = {0}, ε ∈
(al, bl) and

(4.34) bl − al ≥
εl − εl+1
Card(Fl)

≥ Cε1+ k
2

l ≥ C2−l(1+ k
2 ).

Letting
εl := 1

2(bl − al)

we claim that for c > 0 and all j, we have

(4.35)
∣∣λj(εl)∣∣ ≥ cεl k2 .
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Indeed, assuming the opposite, namely that for some j we have,
∣∣λj(εl)∣∣ ≤ δε

k
2
l , where

δ was chosen a priori sufficiently small. It follows that 0 < λj(εl) < δε
k
2
l . Then, from

Lemma 4.4,
λj(al) ≤ λj(εl)− (εl − al)

1
εl

[
λj(εl) + γ

al
2εl
]
.

Thus, (4.34) and (4.35) require that

λj(al)δε
k
2
l − c

εl
2εl
ε
k
2
l

[
λj(εl) + γal

2εl
]
< 0,

for γ small enough. It follows that λj(ε) must vanish at some ε ∈ (al, bl), and we have
thus reached a contradiction with the choice of the interval (al, bl).
The case −δε

k
2
l ≤ λj(εl) < 0 is handled similarly. In that case we get λj(bl) > 0.

The proof of existence and estimate (4.35) is thus complete.
The uniqueness of solutions satisfying the estimate (4.25) follows from standard elliptic
estimates and Sobolev embedding theorem. �

4.3. Nonlinear scheme and proof of Theorem 1.1. We have the main ingredients
to complete the proof of our main result Theorem 1.1. Indeed, by the analysis in
the previous sections, to proof Theorem 1.1 we are reduced to prove solvability of
(4.10). This can be done using a contraction mapping argument. To do this, we let
ΦI−1 = ΦI−1,0 + Φ̃I−1, where ΦI−1,0 solve the equation
(4.36) JK [ΦI−1,0] = HI+1(ȳ; e).
Thus ΦI−1,0 = ΦI−1,0(ȳ; e). Moreover, the reduced system (4.10) becomes

(4.37)



L[ε[Ψ[] = (1− ηεδ)Nε(Ψ[,Ψ∗,ΦI−1, e),

L∗ε[Ψ∗] = Π⊥
[
Mε(Ψ[,Ψ∗,ΦI−1, e)

]
,

εI+1JK [Φ̃I−1] = M̃ε,1(Ψ[,Ψ∗, Φ̃I−1, e),

εKε[e] = M̃ε,2(Ψ[,Ψ∗, Ψ̃I−1, e).
In order to prove that the above system possesses a solution we need to estimate

the size of error terms and the Lipschitz continuity of the functions Nε,Mε and M̃ε,j

(j = 1, 2) with respect to their arguments. This is the purpose of the following two
lemmas.

Lemma 4.5 (Size of the error). There is a constant C independent of ε such that the
following estimates hold:
(4.38)

∥∥Nε(0, 0, 0, 0)
∥∥
C2,α

0 (Mε) +
∥∥Π⊥[Mε(0, 0, 0, 0)

]∥∥
ε,α,ρ

≤ CεI+1.

Moreover,
(4.39)

∥∥M̃ε,1(0, 0, 0, 0)
∥∥
C0,α(K) ≤ Cε

I+2,
∥∥M̃ε,2(0, 0, 0, 0)

∥∥
C0,α(K) ≤ Cε

I+1.

Proof. It follows from the definitions and the estimate (3.40). �

We next define

Bλ :=
{

(Ψ[,Ψ∗,ΦI−1, e)
∣∣ ‖Ψ[‖2,ε,α ≤ λεI+1, ‖Ψ∗‖2,ε,α,ρ ≤ λεI+1,

‖ΦI−1‖2,α ≤ λε, ‖e‖∗ ≤ λεI−3k
}(4.40)

for some positive real number λ. We get
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Lemma 4.6 (Lipschitz continuity). Given (Ψ[
1,Ψ∗1,ΦI−1, e1), (Ψ[

2,Ψ∗2, Φ̃I−1, e2) ∈ Bλ,
then there exists a constant C independent of ε such that the following estimates hold:∥∥Nε(Ψ[

1,Ψ∗1,ΦI−1, e1)−Nε(Ψ[
2,Ψ∗2, Φ̃I−1, e2)

∥∥
C2,α

0 (Mε)

≤ CεI+1
(
‖Ψ[

1 −Ψ[
2‖2,ε,α + ‖Ψ∗1 −Ψ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
,

∥∥Π⊥[Mε(Ψ[
1,Ψ∗1,ΦI−1, e1)

]
−Π⊥

[
Mε(Ψ[

2,Ψ∗2, Φ̃I−1, e2)
]∥∥
ε,α,ρ

≤ CεI+1
(
‖Ψ[

1 −Ψ[
2‖2,ε,α + ‖Ψ∗1 −Ψ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
,

∥∥M̃ε,1(Ψ[
1,Ψ∗1,ΦI−1, e1)− M̃ε,1(Ψ[

2,Ψ∗2, Φ̃I−1, e2)
∥∥
C0,α(K)

≤ CεI+2
(
‖Ψ[

1 −Ψ[
2‖2,ε,α + ‖Ψ∗1 −Ψ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
,

and∥∥M̃ε,2(Ψ[
1,Ψ∗1,ΦI−1, e1)− M̃ε,2(Ψ[

2,Ψ∗2, Φ̃I−1, e2)
∥∥
C0,α(K)

≤ CεI+1
(
‖Ψ[

1 −Ψ[
2‖2,ε,α + ‖Ψ∗1 −Ψ∗2‖2,ε,α,ρ + ‖ΦI−1 − Φ̃I−1‖2,α + ‖e1 − e2‖∗

)
.

Proof. This proof is rather technical but does not offer any real difficulty. We mention
here that the choice of the norm ‖Ψ[‖2,ε,α is crucial to estimate the term

−ηεδ h−pp|W − 1|p−2(W − 1)Ψ[ in Mε(Ψ[,Ψ∗,ΦI−1, e).

We omit details here referring to [13, 29] and some references therein. �

Using the estimates in Lemmas 4.5 and 4.6, it is not difficult to prove that taking
I ≥ 3k + 1 and λ sufficiently large in (4.40), then system (4.37) possesses a fixed point
in Bλ. Theorem 1.1 then follows at once. �

5. Appendices

5.1. Appendix A: Proof of Proposition 2.1. The proof is based on the Taylor
expansion of the metric coefficients. We recall that the Laplace-Beltrami operator is
given by

∆gu = 1√
det g

∂α

(√
det g gαβ ∂βu

)
which can be rewritten as

∆gu = gαβ∂2
αβu+ (∂αgαβ)∂βu+ 1

2 g
αβ∂α(log det g)∂βu.

Using the expansion of the metric coefficients determined above, we can easily prove
that

gαβ ∂2
αβu = g̃ab ∂2

abu+ ∂2
iiu+ ε

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi) g̃ab ∂2

abu− 2ε g̃ab ∂b̄Φ
j ∂2

aju

+ ε2
(
g̃ac ΓbdkΓdcl + g̃bc ΓadkΓdcl + g̃cd ΓadkΓbcl

)
(ξk + Φk)(ξl + Φl) ∂2

abu

+ 2ε2∂b̄Φ
j
{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi) ∂2

aju+ ε2 g̃ab ∂āΦi∂b̄Φ
j ∂2

iju

+R3(ξ,Φ,∇Φ)(∂2
iju+ ∂2

aju+ ∂2
abu).
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An easy computations yields

∂bg
ab = ∂bg̃

ab + ε2 ∂b̄

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi) + ε2

{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi

+R3(ξ,Φ,∇Φ,∇2Φ),

∂jg
ja = ε2∂b̄Φ

j
{
g̃bc Γacj + g̃ac Γbcj

}
+R3(ξ,Φ,∇Φ),

∂ag
aj = −ε2 ∂āg̃

ab ∂b̄Φ
j − ε2 g̃ab ∂2

āb̄
Φj + ε3∂2

āb̄
Φj
{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi)

+R3(ξ,Φ,∇Φ,∇2Φ),

∂ig
ij = R3(ξ,Φ,∇Φ).

Then the following expansion holds

(∂αgαβ)∂βu =

∂bg̃
ab ∂au+ ε2 ∂b̄

{
g̃cb Γaci + g̃ca Γbci

}
(ξi + Φi) ∂au+ ε2

{
g̃cb Γaci + g̃ca Γbci

}
∂b̄ Φi ∂au

+ ε2∂b̄Φ
j
{
g̃bc Γacj + g̃ac Γbcj

}
∂au− ε2 ∂āg̃

ab ∂b̄Φ
j ∂ju− ε2 g̃ab ∂2

āb̄
Φj ∂ju

+ ε3∂2
āb̄

Φj
{
g̃bc Γaci + g̃ac Γbci

}
(ξi + Φi) ∂ju+R3(ξ,Φ,∇Φ,∇2Φ)(∂ju+ ∂au).

On the other hand using the expansion of the log of determinant of g given in Lemma
??, we obtain

∂b log
(

det g
)

= ∂b log
(

det g̃
)
− 2ε2 ∂b̄

(
Γaak

)
(ξk + Φk)− 2ε2 Γaak ∂b̄Φ

k +R3(ξ,Φ,∇Φ,∇2Φ).

and

∂i(log det g) = −2εΓbbi − 2ε2 ΓcakΓaci (ξk + Φk) +R3(ξ,Φ,∇Φ),

which implies that

1
2g

αβ∂α(log det g)∂βu

= 1
2 ∂a(log det g̃)

(
g̃ab ∂bu+ ε

{
g̃cbΓaci + g̃caΓbci

}
(ξi + Φi)∂bu− ε g̃ab∂b̄Φ

j∂ju

)
− εΓbbi∂iu− ε2 ΓcakΓaci (ξk + Φk) ∂iu− ε2

(
∂b̄
(
Γddk

)
(ξk + Φk) + Γddk ∂b̄Φ

k
)
g̃ab∂au

+ R3(ξ,Φ,∇Φ,∇2Φ)(∂ju+ ∂au).

Collecting the above terms and recalling that

∆Kεu = g̃ab∂2
abu+ (∂ag̃ab)∂bu+ 1

2 g̃
ab∂a(log det g̃)∂bu,

the desired result then follows at once.
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5.2. Appendix B: Proof of (3.21). We prove in this section the following identities∫
RN

(
|1− U |p−2(1− U)− 1

)
ξi∂iUdξ̄ = N

∫
RN

Udξ̄ and
∫
RN

Udξ̄ = σ

N

∫
RN
|∂1U |2dξ̄

where σ = p− 1
p

(p+1
p−1 −

n−k
2
)
.

We use Pohozaev identity, we have that

(2−N)
∫
Uf(U)dx = −2N

∫
F (U)dx

where
F (t) :=

∫ t

0
f(s)ds with f(u) := |u− 1|p − 1.

We have F (U) = 1
p+ 1

(
|U − 1|p(U − 1) + 1

)
− U . Then

(2−N)
∫
U
(
|U − 1|p − 1

)
dx = −2N

∫ 1
p+ 1

(
|U − 1|p(U − 1) + 1

)
− Udx.

Namely

(2−N)
∫
|U − 1|pU dx− (2−N)

∫
U dx = 2N

∫
Udx− 2N

p+ 1

∫
|U − 1|pU dx

+ 2N
p+ 1

∫ (
|U − 1|p − 1

)
dx.

Using the fact that ∫ (
|U − 1|p − 1

)
=
∫

∆U = 0
we get ∫

U dx = (p+ 1)(2−N) + 2N
(p+ 1)(N + 2)

∫
|U − 1|pU dx.(5.1)

On the other hand, since U satisfies
−∆U = |U − 1|p − 1,

using integration by parts (multiply by U), we have that∫
|∇U |2 dx =

∫
|U − 1|pU −

∫
U dx

Remplacing this equality in (5.1), we obtain∫
U dx = σ

N

∫
|∇U |2 dx.

Concerning the second equality, we have∫
RN

(
|1− U |p−2(1− U)− 1

)
< ξ̄,∇U > dξ̄

=
∫
RN

(
|1− U |p−2(1− U)

)
< ξ̄,∇U > dξ̄ −

∫
RN

< ξ̄,∇U > dξ̄

=
∫
RN

< ξ̄,
(
|1− U |p−2(1− U)

)
∇U > dξ̄ +N

∫
RN

U dξ̄

=
∫
RN

< ξ̄,∇
(
|1− U |p

)
> dξ̄ +N

∫
RN

U dξ̄

=
∫
RN

< ξ̄,∇
(
|1− U |p − 1

)
> dξ̄ +N

∫
RN

U dξ̄

= −N
p

∫
RN

(
|1− U |p − 1

)
dξ̄ +N

∫
RN

U dξ̄
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Using again the fact that∫
RN

(
|1− U |p − 1

)
dξ̄ =

∫
RN

∆Udξ̄ = 0

it follows that ∫
RN

(
|1− U |p−2(1− U)− 1

)
< ξ̄,∇U > dξ̄ = N

∫
RN

U dξ̄.

This ends the proof of (3.21).
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