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Abstract. We study radial solutions of the problem

∆u+ up + uq = 0, u > 0 in R
N ,

where N
N−2

< p < N+2

N−2
< q and N ≥ 3. We show that if p is close to N

N−2
, q

is close to N+2

N−2
, and a certain relation holds between them, then the problem

has slowly decaying solutions.

1. Introduction

Let N ≥ 3. We are interested in finding radially symmetric solutions u(r),
r = |x|, to

∆u+ up + uq = 0, u > 0 in R
N ,(1.1)

where

N

N − 2
< p <

N + 2

N − 2
< q.(1.2)

Solutions of (1.1) such that

lim
|x|→+∞

u(x) = 0

are called ground states. A ground state such that

lim
|x|→+∞

|x|N−2u(x)

exists and is positive is said to have fast decay, and if it satisfies

lim
|x|→+∞

|x| 2
p−1u(x) = ℓ > 0

we say that u has slow decay. In this case the constant ℓ depends on p and N only
and is given by

Kp :=

(

2

p− 1

(

N − 2− 2

p− 1

))
1

p−1

.

When p = q in equation (1.1) the existence of ground states is well understood.
If p < N+2

N−2 there are no solutions of (1.1) [6], while if p ≥ N+2
N−2 ground states do

exist. In the case of the critical exponent p = N+2
N−2 all solutions are necessarily

radial around some point [5]. Radial ground states in the critical or supercritical
case are parametrized by u(0) and are unique, up to the natural scaling of the
equation. In the critical case the ground state is explicit and has fast decay, while
in the supercritical case the radial ground state has slow decay.
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Lin and Ni considered equation (1.1) in [9] to provide a counter example to
the Nodal Domain Conjecture, and found slow decay ground states of (1.1) when
q = 2p− 1 given explicitly by

u(x) = a(b + |x|2)− 2
q−1 = a(b+ |x|2)− 1

p−1(1.3)

with a = Kp and b = 1
p

(

N − 2− 2
p−1

)2

.

W.-M. Ni then asked whether there are radial ground states of (1.1) under con-
dition (1.2). In their work Bamón, Flores, and del Pino [1] addressed this question
and discovered a complex picture of solutions. First, they found an increasing num-
ber of fast decay ground states, if one of the exponents is fixed and the other one
is sufficiently close to N+2

N−2 . More precisely, they proved that for N
N−2 < p < N+2

N−2

fixed, given any integer k ≥ 1, if q > N+2
N−2 is close enough to N+2

N−2 then (1.1) has

at least k radial ground states with fast decay. They also showed that if N+2
N−2 < q

is fixed, given any integer k ≥ 1, if p < N+2
N−2 is sufficiently close to N+2

N−2 then (1.1)

has at least k radial ground states with fast decay. Furthermore, if q > N+2
N−2 is

fixed there exists p0 > N
N−2 such if 1 < p < p0 then there are no radial ground

states. The authors in [1] obtain their results using dynamical systems arguments.
Recently Campos [2] gave a different proof of the same main result.

Our main interest in this work is the existence of slow decay radial solutions.
These solutions are unique if they exist. Indeed, following [1, p. 555] (see also [7]),
after an Emden-Fowler change of variables, equation (1.1) is transformed into a first
order 3 dimensional system of ODE. Slow decay solutions correspond to trajectories
contained in the 1 dimensional stable manifold of a stationary point, which implies
the uniqueness. But regular slow decay solutions must also lie in the 2 dimensional
unstable manifold of another stationary point, which suggests that their existence
is non-generic in the parameters p, q.

The only indication of existence of regular slow decay radial solutions is a result
in [1], where it is proved that if N

N−2 < p < N+2
N−2 is fixed there is a sequence

qj > N+2
N−2 , qj → N+2

N−2 such that for these exponents there is a radial solution with
slow decay, but it is unknown whether it is regular or singular.

We conjecture that slow decay singular solutions do not exist or exist for a finite
choices (p, q), since they must satisfy two constraints

lim
|x|→0

|x| 2
q−1 u(x) = Kq and lim

|x|→∞
|x| 2

p−1u(x) = Kp.

If one can discard the existence of slow decay singular solutions, the result of [1]
would imply the existence of slow decay radial regular solutions associated to the
sequence of exponents qj .

In this work we prove the existence of slow decay radial regular solutions when
p is close to N

N−2 , q is close to N+2
N−2 and both are related by some equation. More

precisely, let ε > 0, δ > 0 and assume

p =
N

N − 2
+ ε, q =

N + 2

N − 2
+ δ(1.4)

with ε = O(δ).

Theorem 1.1. Let k ≥ 2 be an integer. Then there exists δ0(k) > 0 and a function

εk(δ) > 0 such that for 0 < δ ≤ δ0(k) and ε = εk(δ) there exists a radial slow decay
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Figure 1. Bifurcation diagram for (1.1) showing regular slow de-
cay solutions for N = 5.

solution u of (1.1) with exponents given by (1.4). Moreover, there exist constants

αj, j = 1 . . . k which depend on N and k, and the solution u has the form:

u(x) = γN

k
∑

j=1

(

1

1 + (αjδ−(j+N−4

2
))

4
N−2 |x|2

)
1

p−1

δ−(j+N−4

2
)αj (1 + o(1) ) ,

and εk(δ) satisfies

εk(δ) =
k

2
δ + o(δ) as δ → 0.

where γN = (N(N − 2))
N−2

4 , and o(1) → 0 uniformly on R
N as δ → 0.

The constants α1, . . . , αk have explicit formulas in terms of the numbers Λ∗
j given

in (2.8), from which it follows that

α1 = lim
δ→0

γN
Kp

δ
1

p−1 .

This is consistent with the behavior of the slow decay solutions

lim
|x|→∞

|x| 2
p−1u(x) = Kp.

Solutions to (1.1) corresponding to k = 1 are the explicit ones found by Lin and
Ni and given in (1.3). In this case q = 2p − 1 which corresponds to the relation
δ = 2ε. We believe that the solutions we construct in Theorem 1.1 are the same as
the ones detected in [1] when p is close to N

N−2 and q is close to N+2
N−2 .

The existence of slow decay solutions is interesting due to the following result
of Flores [7]. If for some p, q in the range (1.2) there is a radial ground state with
slow decay and also

p > pc :=
N + 2

√
N − 1

N + 2
√
N − 1− 4

then there are infinitely many radial ground states with fast decay.
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Figure 2. Bifurcation diagram for (1.1) showing singular fast de-
cay solutions for N = 5.

In Figure 1 we show a bifurcation diagram for (1.1) based on numerical computa-
tions. In the axes we have the values of p and q, horizontal and vertical respectively,
for which we have found numerically a regular radial slow decay solution. For p
close to N

N−2 and q close to N+2
N−2 we think that these solutions are exactly the ones

constructed in Theorem 1.1 for curves q = qk(p), k = 1, 2, 3, . . .. For k = 1 the
curve is the line q = 2p− 1 and for k = 2 and 3 the curves start at p = N

N−2 with a
derivative consistent with Theorem 1.1, and then they slightly bend upwards. The
numerical computations show that these curves can be continued even for p > N+2

N−2 .
Hence, at least numerically, we see that solutions with slow decay exist for p > pc
and q = qk(p) and therefore the result of Flores [7] applies.

A dual phenomenon to the existence of bounded solutions with slow decay is
the existence of singular solutions with fast decay. In [1], the authors showed that
if q > N+2

N−2 is fixed there is a sequence pj < N+2
N−2 , pj → N+2

N−2 such that for these
exponents there is either a fast decay singular solution or a slow decay singular
solution.

Numerically we found a family of curves relating p ∈ ( N
N−2 ,

N+2
N−2 ) and q >

N+2
N−2 for which singular fast decay solutions exist, see Figure 2. These curves are

asymptotic to the line p = N+2
N−2 as q → ∞.

Noting that singular solutions satisfy

lim
|x|→0

|x| 2
q−1 u(x) = Kq,



SLOW DECAY SOLUTIONS 5

and using formal asymptotic expansions we arrive at the following conjecture.

Conjecture 1.2. Let k ≥ 1 be an integer. Assume

p =
N + 2

N − 2
− ε.

Then there exists ε0 > 0 and a function qk(ε) > 0 such that for 0 < ε < ε0 and

q = qk(ε) there exists a radial singular fast decay solution u of (1.1). Moreover,

there exist positive constants βj, j = 1 . . . k which depend on N and k, and the

solution u that has the form

u(x) = Kq|x|−
2

q−1



γN

k
∑

j=1

(

1

|x|2 + (βjε(j−1))
4

N−2

)
N−2

2
− 1

q−1

ε(j−1)βj (1 + o(1) )



 ,

(1.5)

and qk(ε) satisfies
(

1

qk(ε)− 1

)N/2

= cNkε+ o(ε) as ε → 0

where γN = (N(N − 2))
N−2

4 , cN = 1
2 (

N−2
2 )

N+2

2
Γ(N

2
)

Γ(N) , and o(1) → 0 uniformly on

R
N as δ → 0. Note here that β1 = γ−1

N .

2. Scheme of the proof of Theorem 1.1

Consider the Emden-Fowler change of variables:

v(t) = rαu(r), r = et,

where

α =
N − 2

2
.

Then the equation ∆u + up + uq = 0 in R
N is equivalent to

v′′ − α2v + eσptvp + eσqtvq = 0 in R,(2.1)

where

σp = α+ 2− αp and σq = α+ 2− αq.

We note that equation (2.1) is the Euler-Lagrange equation of the functional

I(v) =

∫ ∞

−∞

(

1

2
(v′)2 +

α2

2
v2 − eσpt

|v|p+1

p+ 1
− eσqt

|v|q+1

q + 1

)

dt.(2.2)

When p and q are given by (1.4) we have the expressions

σp = 1− αε, σq = −αδ.

In the sequel we always work with

1

C
δ ≤ ε ≤ Cδ,

for some fixed C > 0.
For small ε, δ > 0 a first approximation to a solution of (2.1) is given by

U0(t) = γN2−α cosh(t)−α,(2.3)
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where

γN = (N(N − 2))
N−2

4 .(2.4)

This function satisfies

U ′′
0 − α2U0 + U

N+2

N−2

0 = 0 in R.

In the original variables this function is the standard bubble

u0(x) = γN
1

(1 + |x|2)(N−2)/2
,

which satisfies

∆u0 + u
N+2

N−2

0 = 0, u0 > 0 in R
N .

Thus U0 corresponds to a function with fast decay. The translate U0(t−ξ) becomes a
good approximation of (2.1) as ξ → −∞ and ε, δ → 0. To achieve an approximation
with slow decay, we define β = 1

p−1 and

U(t) = γN
eαt

(1 + e2t)β
, t ∈ R.

This is an actual solution of (2.1) if q = 2p− 1, with one bump. As in [4] and [2],
one can find a multibump solution starting from

V (t) =

k
∑

j=1

U(t− ξj),(2.5)

where ξj ∈ R are parameters to be adjusted. After a change of variables this is at
main order the solution in the statement of Theorem 1.1.

The location of these points can be determined by an expansion of I(V ). Indeed,
assuming the points are sufficiently separated we have

I(V ) = −c1

k
∑

j=1

eξj − c2

k−1
∑

j=1

eα(ξj+1−ξj) + c3δ

k
∑

j=1

ξj + kc0 +Aδ + o(δ)

where c1, c2, c3, A, c0 are constants, see Proposition 3.1, where also the constants
are given. Note that c1, c2, c3 > 0. One can see that in order to obtain a solution,
ξ1, . . . , ξk has to be close to a critical point of the above functional. To see this
criticality more clearly it is convenient to write







ξ1 = log δ − log Λ1,

ξj+1 = ξj +
1

α
log δ − log Λj+1 ∀j = 1, . . . , k − 1,

(2.6)

with

1

M
≤ Λj ≤ M ∀j = 1, . . . , k.(2.7)

and M > 1 a constant to be fixed later on. Note that

ξj =

(

1 +
j − 1

α

)

log δ −
j
∑

i=1

log Λi for j = 1, . . . , k.
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With this choice of the points, I(V ) takes the form

−c1δΛ
−1
1 −c2δ

k
∑

j=2

Λ−α
j −c3δ

k
∑

j=1

(k−j+1) logΛj+c3k(1+
k − 1

α
)δ log δ+kc0+Aδ+o(δ).

Let

ϕ(Λ1, . . . ,Λk) =
c1
Λ1

+ c3k log Λ1 +

k
∑

j=2

(

c2Λ
−α
j + (k − j + 1)c3 log Λj

)

.

We note that ϕ has a unique critical point Λ∗ = (Λ∗
1, . . . ,Λ

∗
k) given by

Λ∗
1 =

c1
kc3

, Λ∗
j =

(

c2α

c3(k − j + 1)

)1/α

∀j = 2, . . . , k,(2.8)

and that this critical point is a nondegenerate minimum. In the sequel we fix the
number M in (2.7) such that Λ∗

i ∈ ( 1
2M , 2M).

To find an actual solution v close to V we perform a Lyapunov-Schmidt reduc-
tion. We look for a solution v to (2.1) of the form

v = V + φ,

where φ is a lower order correction. We find the following equation for φ

Lφ+ E +N(φ) = 0 in R,(2.9)

where

Lφ = φ′′ − α2φ+ (peσptV p−1 + qeσqtV q−1)φ(2.10)

N(φ) = eσpt((V + φ)p − V p − pV p−1φ) + eσqt((V + φ)q − V q − qV q−1φ)

E = V ′′ − α2V + eσptV p + eσqtV q.(2.11)

The perturbation φ : R → R will be small in an appropriate norm, which we
introduce next. Let τ > 0 be a small fixed number, 0 < ν < min(2, α) and define

‖φ‖∗ = sup
t∈R

|φ(t)|
w(t)

,

where

w(t) =











e−(α+τ)(t−ξ1) if t ≥ ξ1
k
∑

i=1

e−ν|t−ξi| if t ≤ ξ1.
(2.12)

To motivate this choice of norm, we remark that the exponential decay of φ between
the points ξj is expected because far from these points the dominant terms in the
equation (2.1) are the linear ones, i.e. φ′′ − α2φ. Bounded solutions will then have
exponential decay away from the ξj of the form e−ν|t−ξi| with 0 < ν < α. For
t ≥ ξ1 one in general can expect the same behavior. However,the solution we are
looking for has slow decay as t → +∞, in the sense that it behaves as e(α−2β)t

as t → +∞ where β = 1
p−1 . To solve the nonlinear problem by the Banach fixed

point theorem we need φ to have faster decay than e−αt as t → +∞. To see this,
consider the following term in N(φ):

eσpt((V + φ)p − V p − pV p−1φ) ∼ eσptV p−2φ2 ∼ eσpt+(α−2β)(p−2)tφ2
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where β = 1
p−1 . Note that σp + (α− 2β)(p− 2) = β −α = α+O(ε). Suppose that

φ has decay of the form |φ(t)| ≤ Ae−m|t−ξ1| for t ≥ ξ1. Then in N(φ) we find one
term of the form

CA2e(α+O(ε))ξ1 e(α+O(ε)−2m)(t−ξ1) t ≥ ξ1

For the contraction mapping principle to work we would like m such that α+O(ε)−
2m ≤ −m for all ε > 0 small, which leads to the choice m = α+ τ , τ > 0 fixed.

Having introduced a good norm for the contraction mapping to work, let us look
at the error E defined by (2.11). We note that E contains a term of the form
Se(α−2β)t, which we may call the slowly decaying part of E, and other terms that
decay faster, where S is a function of ε, δ,Λ1, . . . ,Λk. Since β = α + O(ε), we
see that ‖E‖∗ = +∞ unless S = 0. We prove in Proposition 4.1 that there is a
function εk(δ,Λ1, . . . ,Λk) > 0 such that S = 0 if ε = εk(δ,Λ1, . . . ,Λk), and then also
‖E‖∗ ≤ Cδθ for some θ > 1/2 and all δ > 0 small. The function εk(δ,Λ1, . . . ,Λk)
is at main order of the form Cδ/Λ1 for some constant C.

Using the contraction mapping principle, and a suitable right inverse of L, con-
structed in Section 5, which preserves the norm ‖ ‖∗, we prove in Section 6 that
for δ > 0 small enough and ε = εk(Λ, δ) there exists a solution φ to the nonlinear
projected problem

Lφ+ E +N(φ) =

k
∑

i=1

ciZ̃i,

such that ‖φ‖∗ ≤ Aδθ, for a suitable constant A > 0. Here Z̃i are defined in
(5.2). Finally, to find a solution of (2.9) it remains to verify that one can choose
Λ = (Λ1, . . . ,Λk) such that the constants ci are all zero, which is done in Section 6.

3. Expansion of the energy

Proposition 3.1. Let M > 1. Assume Λ = (Λ1, . . . ,Λk) satisfies Λi ∈ [1/M,M ],
i = 1, . . . , k and ξ1, . . . , ξk are given by (2.6) . Let V denote the initial ansatz (2.5)
and I the functional (2.2). Assuming 0 < ε ≤ Cδ for some C, we have

I(V ) = −δϕ(Λ) + kc0 +Aδ +Bδ log δ + δΘ0(Λ)

where

ϕ(Λ1, . . . ,Λk) =
c1
Λ1

+ c3k log Λ1 +
k
∑

j=2

(

c2Λ
−α
j + (k − j + 1)c3 log Λj

)

,

and Θ0 → 0 in C1 norm on the set defined by Λi ∈ [1/M,M ], i = 1, . . . , k.

The constants are given by

c1 =
N − 2

2N − 2

∫ ∞

−∞

etU
2N−2

N−2

0 dt c2 =
γN
2

∫ ∞

−∞

U0(t)
2∗−1eαt dt(3.1)

c3 =
α

2∗

∫ ∞

−∞

U2∗

0 dt,(3.2)
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c0 =
1

2

∫ ∞

−∞

((U ′
0)

2 + α2U2
0 )−

1

2∗

∫ ∞

−∞

U2∗

0 ,

A =
k

(2∗)2

∫ ∞

−∞

U2∗

0 − k

2∗

∫ ∞

−∞

U2∗

0 logU0, B =
α

2∗
k

(

1 +
k − 1

2α

)∫ ∞

−∞

U2∗

0 ,

Here 2∗ = 2N/(N−2). Note that c1, c2, c3 > 0 and these constants can be explicitly
computed using the identity

∫ ∞

−∞

cosh (s)
−q

e−µs ds = 2q−1Γ(
q−µ
2 ) Γ( q+µ

2 )

Γ(q)

for all µ ∈ R and q > max{µ,−µ}.
Proof of Proposition 3.1. We follow the computation in [4]. We write

I = I1 + I2 + I3 + I4 + I5

where

I1(v) =

∫ ∞

−∞

(

1

2
(v′)2 +

α2

2
v2 − |v|2∗

2∗

)

I2(v) =
1

2∗

∫ ∞

−∞

(|v|2∗ − |v|q+1) +

(

1

2∗
− 1

q + 1

)∫ ∞

−∞

eσqt|v|q+1

I3(v) =

∫ ∞

−∞

(

1− eσqt
) |v|q+1

2∗
I4(v) = −

∫ ∞

−∞

eσpt
|v|p+1

p+ 1
.

Let us start with the computation of I2(V ). Since q = N+2
N−2 + δ, we have

1

2∗

∫ ∞

−∞

(V 2∗ − V q+1) = − δ

2∗

∫ ∞

−∞

V 2∗ logV + o(δ) = −kδ

2∗

∫ ∞

−∞

U2∗ logU + o(δ)

= −kδ

2∗

∫ ∞

−∞

U2∗

0 logU0 + o(δ),

recalling that U depends on ε and ε = O(δ). The second term in I2(V ) is

δ

(2∗)2

∫ ∞

−∞

eσqtV q+1 + o(δ) =
δ

(2∗)2

∫ ∞

−∞

eσqtV 2∗ + o(δ) =
δk

(2∗)2

∫ ∞

−∞

U2∗

0 + o(δ).

Therefore

I2(V ) = Aδ + o(δ).(3.3)

Regarding I3(V ) we have

I3(V ) =
αδ

2∗

∫ ∞

−∞

tV (t)q+1 dt+ o(δ) =
αδ

2∗

k
∑

i=1

∫ ∞

−∞

tU(t− ξi)
q+1 dt+ o(δ)

=
αδ

2∗

k
∑

i=1

ξi

∫ ∞

∞

U2∗

0 + o(δ).

Since ξi are given by (2.6) we obtain

I3(V ) =
αδ

2∗

∫ ∞

∞

U2∗

0

[

k

(

1 +
k − 1

2α

)

log δ −
k
∑

i=1

(k − i+ 1) logΛi

]

+ o(δ).(3.4)
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For I4(V ) we see that

I4(V ) = − 1

p+ 1

∫ ∞

−∞

eσptV p+1 = − 1

p+ 1

∫ ∞

−∞

eσptU(t− ξ1)
p+1 + o(δ)

= − eσpξ1

p+ 1

∫ ∞

−∞

eσptU(t)p+1 + o(δ) = −δΛ−1
1

p+ 1

∫ ∞

−∞

eσptU(t)p+1 + o(δ)

= − δ

Λ1

N − 2

2N − 2

∫ ∞

−∞

etU0(t)
2N−2

N−2 dt+ o(δ).(3.5)

Finally we compute I1(V ). Using the notation Ui(t) = U(t− ξi) we have

I1(V ) =

∫ ∞

−∞

(

1

2
(
∑

i

U ′
i)

2 +
α2

2
(
∑

i

Ui)
2 − 1

2∗
(
∑

i

Ui)
2∗

)

= kIU +
1

2

∑

i6=j

∫ ∞

−∞

(−U ′′
i + α2Ui)Uj −

1

2∗

∫ ∞

−∞

[

(
∑

i

Ui)
2∗ −

∑

i

U2∗

i

]

,

where we have set

IU =
1

2

∫ ∞

−∞

((U ′)2 + α2U2)− 1

2∗

∫ ∞

−∞

U2∗ .

Note that

IU = c0 + o(δ) as δ → 0.(3.6)

Indeed, IU is a function of ε and

d

dε
IU =

∫ ∞

−∞

(−U ′′ + α2U − U2∗−1)
∂U

∂ε

so that d
dεIU = 0 at ε = 0. Let Fi(t) = F (t− ξi) where F = −U ′′ + α2U − U2∗−1.

Then by (3.6)

I1(V ) =
1

2

∑

i6=j

∫ ∞

−∞

(U2∗−1
i + Fi)Uj −

1

2∗

∫ ∞

−∞

[

(
∑

i

Ui)
2∗ −

∑

i

U2∗

i

]

+ kc0 + o(δ).

Let

t1 = 0, tj = (1 +
j − 1/2

α
) log δ, j = 2, . . . , k − 1, tk = −∞.

Then we can write

I1(V ) = −1

2

k
∑

i=1

∑

j 6=i

∫ ti−1

ti

U2∗−1
i Uj + kc0 +R

where R contains all the rest and is given by

R =
1

2

k
∑

i=1

∑

j 6=i

∫ ti−1

ti

FiUj +
1

2

k
∑

i=1

∑

j 6=i

∫

R\[ti,ti−1]

U2∗−1
i Uj +

1

2∗

k
∑

i=1

∑

j 6=i

∫ ti−1

ti

U2∗

j

− 1

2∗

k
∑

i=1

∫ ti−1

ti

[

(Ui +
∑

j 6=i

Uj)
2∗ − U2∗

i − 2∗U2∗−1
i

∑

j 6=i

Uj

]

+ o(δ).
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We note that if |i− j| ≥ 2 then
∫ ti−1

ti

U2∗−1
i Uj = o(δ).

We have the expansions

U(t) = γNeαt(1 +O(e2t)) as t → −∞,

U(t) = γNe(α−2β)t(1 +O(e−2t)) as t → +∞.

Therefore, for i = 1, . . . , k − 1 and j = i+ 1
∫ ti−1

ti

U2∗−1
i Uj =

∫ ti−1−ξi

ti−ξi

U(t)
N+2

N−2U(t− (ξi+1 − ξi)) dt

= γN

∫ ti−1−ξi

ti−ξi

U(t)
N+2

N−2 e(α−2β)(t−(ξi+1−ξi))(1 +O(e2(t−(ξi+1−ξi)))) dt

= γNδ
2β−α

α Λα−2β
i+1

∫ ti−1−ξi

ti−ξi

U(t)
N+2

N−2 e(α−2β)t(1 +O(e2(t−(ξi+1−ξi)))) dt

= γNδΛ−α
i+1

∫ ∞

−∞

U0(t)
N+2

N−2 e−αt dt+ o(δ).

A similar calculation shows that if i = 2, . . . , k and j = i− 1 then
∫ ti−1

ti

U2∗−1
i Uj = γNδΛ−α

i

∫ ∞

−∞

U0(t)
N+2

N−2 eαt dt+ o(δ).

Regarding R, it is possible to verify that

R = o(δ)

as δ → 0. For instance we have:
∫ ti−1

ti

[

(Ui +
∑

j 6=i

Uj)
2∗ − U2∗

i − 2∗U2∗−1
i

∑

j 6=i

Uj

]

≤ C

∫ ti−1

ti

U2∗−2
i

∑

j 6=i

U2
j

≤ C

∫ 1
2α

| log δ|

0

e−α 4
N−2

te−2α( 1
α
| log δ|−t) dt

≤ Cδ2
∫ 1

2α
| log δ|

0

e2α
N−4

N−2
t dt

which is O(δ1+
2

N−2 ) if N ≥ 5, O(δ2| log δ|) if N = 4, and O(δ2) if N = 3. The other
terms in R can be handled similarly. Therefore, we obtain

I1(V ) = −δγN

∫ ∞

−∞

U0(t)
N+2

N−2 eαt dt

k
∑

j=2

Λ−α
j + kc0 + o(δ).(3.7)

Combining (3.3), (3.4), (3.5), and (3.7) we arrive at

I(V ) = −δϕ(Λ) + kc0 +Aδ +Bδ log δ + o(δ)

as δ → 0 for some constants A,B, with o(δ) uniformly in the region Λi ∈ [1/M,M ],
i = 1, . . . , k. A similar calculation shows that this expansion is also valid in the C1

norm with respect to Λ = (Λ1, . . . ,Λk). �
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4. Error estimate

Here we will prove the following result.

Proposition 4.1. Let k ≥ 2 be an integer and fix M > 1. Suppose Λi ∈ [1/M,M ],
i = 1, . . . , k, ξi are given by (2.6) and E is defined by (2.11). If ν > 0 and

τ > 0 are chosen small in (2.12), there exists δ0 > 0, θ > 1/2 and a function

εk(δ,Λ1, . . . ,Λk) > 0 such that for 0 < δ ≤ δ0 and ε = εk(δ,Λ1, . . . ,Λk)

‖E‖∗ ≤ Cδθ,

with C independent of δ.

The function εk is C1 and satisfies

εk(δ,Λ1, . . . ,Λk) =
γp−1
N

4α3Λ1
δ + o(δ) as δ → 0,(4.1)

∂εk
∂Λi

(δ,Λ1, . . . ,Λk) = O(δ) as δ → 0,(4.2)

where o(δ), O(δ) are uniform in the region Λi ∈ [1/M,M ], i = 1, . . . , k.
Proof. Let us write

Uj(t) = U(t− ξj) and V =

k
∑

j=1

Uj .

We decompose

E =

k
∑

j=1

Ej +A+B,

where

Ej = U ′′
j − α2Uj + eσptUp

j + eσqtU q
j

A = eσpt(V p −
k
∑

j=1

Up
j ) , B = eσqt(V q −

k
∑

j=1

U q
j ).

Let

β =
1

p− 1
= α− εα2 +O(ε2).

Then a computation shows that

U ′′
j − α2Uj + eσptUp

j =
[

eσpξjγp
N + 4γNβ(β − α)

] e(α+2)(t−ξj)

(1 + e2(t−ξj))β+1
+

− 4γNβ(β + 1)
e(α+2)(t−ξj)

(1 + e2(t−ξj))β+2
.

Note that the terms U ′′
j − α2Uj + eσptUp

j of Ej have slow decay, i.e., U ′′
j − α2Uj +

eσptUp
j ∼ e(α−2β)t as t → ∞. We define the slowly decaying part of Ej as

Sj = χ[t≥ξ1/2]

(

4γNβ(β − α)e−(α−2β)ξj + γp
Ne−(α−2β)pξj

)

e(α−2β)t,

where χ[t≥ξ1/2] is the indicator of the set [ξ1/2,+∞), and also

Ẽj = Ej − Sj .
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The term A has also a slowly decaying part SA given by

SA = χ[t≥ξ1/2]γ
p
N





(

k
∑

j=1

e−(α−2β)ξj
)p

−
k
∑

j=1

e−(α−2β)pξj



 e(α−2β)t.

We define
Ã = A− SA.

Given δ > 0 small and ξ1, . . . , ξk satisfying (2.6) and (2.7) we choose ε > 0 such
that

k
∑

j=1

Sj + SA = 0

which is equivalent to

0 = 4γNβ(β − α)

k
∑

j=1

e−(α−2β)ξj + γp
N

(

k
∑

j=1

e−(α−2β)ξj
)p

.(4.3)

By (2.6) we see that at main order (in ε and δ) this equation has the form

4γNβ(β − α)e−(α−2β)ξ1 + γp
Ne−(α−2β)pξ1 = 0,

so that we have the asymptotic expansion (4.1). The estimate (4.2) follows also
from (4.3).

We claim that

‖Ẽj‖∗ ≤ Cδ1−2τ(4.4)

for δ > 0 small. Consider separately the regions t ≥ ξ1/2, and t ≤ ξ1/2. Using the
formula of Sj we have

Ẽj = O(e(α−2β−2)(t−ξj)) +O(eσpte((α−2β)p−2)(t−ξj)) +O(eσqte(α−2β)q(t−ξj))

for t ≥ ξ1/2 and we see from here that

sup
t≥ξ1/2

|Ẽj |e(α+τ)(t−ξ1) ≤ Cδ1−τ/2+O(δ) ≤ Cδ1−τ

for δ > 0 small.
We estimate now in the interval t ≤ ξ1/2. In this interval

Ẽj = −4γNβ(α + 1)
e(α+2)(t−ξj)

(1 + e2(t−ξj))β+1
+ 4γNβ(β + 1)

e(α+4)(t−ξj)

(1 + e2(t−ξj))β+2

+eσptγp
N

eαp(t−ξj)

(1 + e2(t−ξj))βp
+ eσqtγq

N

eαq(t−ξj)

(1 + e2(t−ξj))βq

= O(δ)(1 + |t|+ |ξj |)e−(α+O(δ))|t−ξj |,(4.5)

where in this formula O(δ) designates a quantity bounded by a constant times δ.
From (4.5) we have

sup
t≤ξ1

eν|t−ξi||Ẽj | ≤ Cδ for any i = 1, . . . , k,(4.6)

and

sup
ξ1≤t≤ξ1/2

e(α+τ)|t−ξ1||Ẽj | ≤ Cδ1−2τ(4.7)

for δ > small. Using (4.6), (4.7) we deduce (4.4).
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Similarly we estimate Ã first in the region t ≥ ξ1/2. For t ≥ ξ1/2

Ã = A− SA = A1 +A2,

where

A1 = γp
Neσpte(α−2β)pt









k
∑

j=1

e−(α−2β)ξj

(1 + e2(ξj−t))β





p

−





k
∑

j=1

e−(α−2β)ξj





p



and

A2 = −γp
Neσpte(α−2β)pt





k
∑

j=1

e−(α−2β)pξj

(1 + e2(ξj−t))βp
−

k
∑

j=1

e−(α−2β)pξj



 .

In the range t ≥ ξ1/2 we have (1 + se2(ξj−t))−β−1 = O(1) so by the mean value
theorem

|A1| ≤ Ceσpte(α−2β)pt
k
∑

j=1

e−(α−2β)ξjpe2(ξj−t) for t ≥ ξ1/2.

We then compute

sup
t≥ξ1/2

e(α+τ)(t−ξ1)|A1| ≤ Cδ2−τ/2+O(δ).

Similarly

sup
t≥ξ1/2

e(α+τ)(t−ξ1)|A2| ≤ Cδ2−τ/2+O(δ)

and we deduce

sup
t≥ξ1/2

e(α+τ)(t−ξ1)|Ã| ≤ Cδ2−τ/2+O(δ).(4.8)

In the region ξ1 ≤ t ≤ ξ1/2 we have

|A| ≤ Ceσpt





k
∑

j=2

U(t− ξj)U(t− ξ1)
p−1 +

k
∑

j=2

U(t− ξj)
p





which gives

sup
ξ1≤t≤ξ1/2

e(α+τ)(t−ξ1)|A| ≤ Cδ2−τ/2+O(δ).(4.9)

To estimate the term A for t ≤ ξ1, using that eσpt ≤ Cδ1+O(δ) in this region we see
that

sup
t≤ξ1

eν|t−ξi||A| ≤ Cδ1+O(δ) for i = 1, . . . , k.(4.10)

Hence by (4.8), (4.9) and (4.10) we find

‖Ã‖∗ ≤ Cδ1+O(δ).

We finally estimate ‖B‖∗. We claim that there is θ > 1/2 such that

‖B‖∗ ≤ Cδθ(4.11)

for δ > 0 sufficiently small. Indeed, let i = 1, . . . , k − 1 and let us estimate

sup
ξi+1≤t≤ξi

(eν|t−ξi+1| + eν|t−ξi|)|B|.
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Let λ ∈ (0, 1/2) to be fixed later on. We consider the 3 intervals

I1 = [ξi+1, (1 − λ)ξi+1 + λξi],

I2 = [(1 − λ)ξi+1 + λξi, λξi+1 + (1− λ)ξi],

I3 = [λξi+1 + (1 − λ)ξi, ξi].

The worst term in each sum of B is U(t− ξi+1)
q or U(t− ξi)

q. We estimate

sup
t∈I2

eν|t−ξi|U(t− ξi)
q ≤ C sup

t∈I2

eν(ξi−t)e−αq(ξi−t)

≤ Ce(ν−αq)ξi sup
t∈I2

e(αq−ν)t

= Cδλ(q−ν/α).

Since q > 1 we may choose ν > 0 small so that q− ν/α > 1. Then take λ ∈ (0, 1/2)
so that

λ(q − ν/α) >
1

2
.(4.12)

We also have

sup
t∈I2

eν|t−ξi+1|U(t− ξi+1)
q ≤ Cδλ(q−ν/α).

This gives

sup
t∈I2

|B|
w(t)

≤ Cδλ(q−ν/α)+O(δ).

We now compute

sup
t∈I3

eν|t−ξi|eσqt









k
∑

j=1

U(t− ξj)





q

−
k
∑

j=1

U(t− ξj)
q



 .

In this region U(t− ξi) is dominant. So




k
∑

j=1

U(t− ξj)





q

= U(t− ξi)
q



1 +

k
∑

j 6=i

U(t− ξj)

U(t− ξi)





q

= U(t− ξi)
q +

k
∑

j 6=i

O(U(t− ξj)U(t− ξi)
q−1).

So

sup
t∈I3

eν|t−ξi|eσqt

∣

∣

∣

∣

∣

∣





k
∑

j=1

U(t− ξj)





q

−
k
∑

j=1

U(t− ξj)
q

∣

∣

∣

∣

∣

∣

≤ C sup
t∈I3

eν|t−ξi|eσqt





k
∑

j 6=i

U(t− ξj)U(t− ξi)
q−1 +

k
∑

j=1

U(t− ξj)
q





The worst case is j = i+ 1 in the first sum

sup
t∈I3

eν|t−ξi|eσqtU(t− ξi+1)U(t− ξi)
q−1

≤ Ceνξie−(α−2β)ξi+1e−αξi(q−1) sup
t∈I3

e−νteσqte(α−2β)teα(q−1)t
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If the sup is attained at t = ξi:

sup
t∈I3

eν|t−ξi|eσqtU(t− ξi+1)U(t− ξi)
q−1

= Ceα(ξi+1−ξi)+O(δ| log δ|) ≤ Cδ

If the sup is attained at t = λξi+1 + (1 − λ)ξi:

sup
t∈I3

eν|t−ξi|eσqtU(t− ξi+1)U(t− ξi)
q−1

≤ Cδ(q−1−ν/α)λδ(2β−α)/α(1−λ)eδ| log δ|

≤ Cδ(q−ν/α)λ+1−2λ

Since λ ∈ (0, 1/2), we have that (q − ν/α)λ+ 1− 2λ > 1/2 by (4.12).
By similar estimates in the remaining intervals we obtain the validity of (4.11)

with θ = λ(q − ν/α) > 1/2. �

5. The linearized equation

In this section, given ξ1, . . . , ξk ∈ R such that (2.6) and (2.7) hold for some fixed
M > 1, we study the linear problem















L(φ) = h+
k
∑

i=1

ciZ̃i in R,

lim
t→±∞

φ(t) = 0,

(5.1)

where L is the operator defined in (2.10), and Z̃i is defined by

Z̃i(t) = U ′
0(t− ξi)η(t− ξi),(5.2)

where η ∈ C∞(R) is an even cut-off function, η ≥ 0, such that supp(η) = [−R,R]
where R > 0 is a fixed constant. We will also use the notation

Zi(t) = U ′
0(t− ξi).

The main result in this section is the following.

Proposition 5.1. Fix M > 1 and assume ξ1, . . . , ξk ∈ R satisfy (2.6) and (2.7).
Then there are δ0 > 0, C such that for 0 < δ ≤ δ0 and 0 < ε ≤ Cδ there is a linear

operator T such that given h with ‖h‖∗ < ∞, (φ, c1, . . . , ck) = T (h) solves (5.1).
Moreover

‖φ‖∗ ≤ C‖h‖∗ and |ci| ≤ C‖h‖∗ ∀i = 1, . . . , k.

For τ > 0, 0 < ν < α fixed and φ : R → R we define

‖φ‖1 = sup
t≥ξ1

(e(α+τ)(t−ξ1)|φ(t)|) + sup
t≤ξ1

(eν(ξ1−t)|φ(t)|).(5.3)

Lemma 5.2. Assume τ > 0 and 0 < ν < α. Given h with ‖h‖1 < +∞, there is a

unique φ with ‖φ‖1 < +∞ and c1 ∈ R such that

φ′′ − α2φ+ 2∗U0(t− ξ1)
2∗−1φ = h+ c1Z̃1 in R.(5.4)

Moreover, there is C > 0 such that

‖φ‖1 ≤ C‖h‖1 and |c1| ≤ C‖h‖1.(5.5)
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Proof. By translation we may assume here that ξ1 = 0.
Let U0 be the function defined by (2.3) and z1 = U ′

0. Then

z1(t) = −γN2−αα cosh(t)−N/2 sinh(t)(5.6)

and satisfies

z′′ − α2z + 2∗U2∗−1
0 z = 0 in R.(5.7)

and

z1(0) = 0 and z′1(0) = −2−ααγN .

Let z2 be the solution to (5.7) with initial conditions

z2(0) = 1 and z′2(0) = 0.

To prove uniqueness observe that if h = 0, then multiplying (5.4) by z1 we
deduce that c1 = 0. Then φ must be a linear combination of z1 and z2, and since
‖φ‖1 < +∞, φ = cz1 for some c. But again, because ‖φ‖1 < +∞, φ = 0.

Let us prove the existence. Suppose ‖h‖1 < ∞ and
∫∞

−∞
hz1 = 0. Define

φ(t) =
2α

αγN

(

z1(t)

∫ ∞

t

z2(s)h(s) ds− z2(t)

∫ ∞

t

z1(s)h(s) ds

)

.(5.8)

Then φ is a solution to the linear problem

φ′′ − α2φ+ 2∗U2∗−1
0 φ = h in R

and

‖φ‖1 ≤ C‖h‖1.(5.9)

Indeed, from (5.6) we have z1(t) = ce−α|t|+ o(e−α|t|) as t → ±∞ for some constant
c. Furthermore one can also prove that z2(t) = c′eα|t| + o(eα|t|) as t → ±∞ for
some constant c′ 6= 0. Then (5.9) follows from (5.8) and the behaviors of z1, z2 at
±∞.

In the general case, when h is not necessarily orthogonal to z1, we define

c1 = −
∫∞

−∞
hz1

∫∞

−∞
Z̃1z1

and apply the previous construction to h+ c1Z̃1. �

For φ : R → R consider the norm

‖φ‖2 = sup
t∈R

(

k
∑

i=2

e−ν|t−ξi|

)−1

|φ(t)|.(5.10)

Lemma 5.3. Suppose that in the definition of ‖ ‖2 we take 0 < ν < α. Then there

exist δ0 > 0, C such that if 0 < δ ≤ δ0 and ‖h‖2 < ∞ there is a unique solution φ
with ‖φ‖2 < +∞ and c2, . . . , ck ∈ R of



















φ′′ − α2φ+ 2∗
k
∑

i=2

U0(t− ξi)
2∗−1φ = h+

k
∑

i=2

ciZ̃i in R

∫

R

φZ̃i = 0 ∀i = 2, . . . , k.

(5.11)
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Moreover

‖φ‖2 ≤ C‖h‖2, |ci| ≤ C‖h‖2 ∀i = 2, . . . , k.(5.12)

Proof. It is analogous to that of Proposition 1 in [2]. �

Lemma 5.4. Let 0 < ν < min(2, α) and τ > 0. Then there are δ0 > 0, C such

that for 0 < δ ≤ δ0 there is a linear operator T0 such that given h with ‖h‖∗ < ∞,

(φ, c1, . . . , ck) = T0(h) solves

φ′′ − α2φ+ 2∗
k
∑

i=1

U0(t− ξi)
2∗−1φ = h+

k
∑

i=1

ciZ̃i in R(5.13)

Moreover

‖φ‖∗ ≤ C‖h‖∗ and |ci| ≤ C‖h‖∗ ∀i = 1, . . . , k.(5.14)

Proof. Define

Wi(t) = 2∗U0(t− ξi)
2∗−1.(5.15)

Let η1, η2 ∈ C∞(R) be such that 0 ≤ η1, η2 ≤ 1, and
{

η1 ≡ 1 in (−∞, (1 + 1
2α ) log δ], η1 ≡ 0 in [(1 + 1

4α ) log δ,∞)

η2 ≡ 1 in (−∞, (1 + 3
4α ) log δ], η2 ≡ 0 in [(1 + 1

2α ) log δ,∞).

We look for a solution of (5.13) of the form φ = φ1 + φ2η2. For this it is sufficient
that φ1, φ2 satisfy the following system

φ′′
1 − α2φ1 +W1φ1 =(1− η2)h+ c1Z̃1 − (1− η2)

k
∑

i=2

Wiφ1(5.16)

− 2φ′
2η

′
2 − φ2η

′′
2

φ′′
2 − α2φ2 +

k
∑

i=2

Wiφ2 =η1h+

k
∑

i=2

ciZ̃i − η1W1φ2 − η1

k
∑

i=2

Wiφ1 in R.(5.17)

Define the operator φ = T1(h) to be the solution of (5.4) of Lemma 5.2 and φ =
T2(h) to be the solution of (5.11) obtained in Lemma 5.3. Then to find a solution
of (5.16), (5.17) with the correct bounds we are led to solve the system

φ1 = T1[(1− η2)h− (1− η2)

k
∑

i=2

Wiφ1 − 2φ′
2η

′
2 − φ2η

′′
2 ](5.18)

φ2 = T2[η1h− η1W1φ2 − η1

k
∑

i=2

Wiφ1](5.19)

We do this in the Banach spaceE consisting of pairs (φ1, φ2) of functions φj : R → R

such that φ2 is Lipschitz continuous and the following norm is finite

‖(φ1, φ2)‖E = ‖φ1‖1 + ‖φ2‖2 + ‖φ′
2‖2

where ‖ ‖1 is defined by (5.3) and ‖ ‖2 in (5.10). We will verify that the operator

T̃ : E → E defined by the right hand side of (5.18), (5.19) is a contraction on E.
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For this we estimate thanks to (5.5)

‖T1[−(1− η2)

k
∑

i=2

Wiφ1 − 2φ′
2η

′
2 − φ2η

′′
2 ]‖1

≤ C(‖(1− η2)

k
∑

i=2

Wiφ1‖1 + ‖φ′
2η

′
2‖1 + ‖φ2η

′′
2 ‖1)

Some computations show that

‖(1− η2)

k
∑

i=2

Wiφ1‖1 ≤ Cδ
1
α ‖φ1‖1

‖φ′
2η

′
2‖1 ≤ C

| log δ| ‖φ
′
2‖2

‖φ2η
′′
2 ‖1 ≤ C

| log δ|2 ‖φ2‖2

Using (5.12) we have

‖T2[−η1W1φ2 − η1

k
∑

i=2

Wiφ1]‖2 ≤ C(‖η1W1φ2‖2 + ‖η1
k
∑

i=2

Wiφ1‖2)

By computation we obtain

‖η1W1φ2‖2 ≤ Cδ
1
2α ‖φ2‖2

and, if ν ≥ 1

‖η1
k
∑

i=2

Wiφ1‖2 ≤ Cδ
3−ν
2α ‖φ1‖1

while if ν < 1

‖η1
k
∑

i=2

Wiφ1‖2 ≤ Cδ
ν
α ‖φ1‖1.

We see that if ν < 3 then T̃ is a contraction in E. �

Proof of Proposition 5.1. First, let us prove existence of a solution. Let Wi be
defined by (5.15). Let us write equation (5.1) in the form

φ = T0[h+ (

k
∑

i=1

Wi − peσptV p−1 − qeσqtV q−1)φ](5.20)

where T0 is the operator defined in Lemma 5.4. Let X the Banach space of contin-
uous functions φ : R → R such that ‖φ‖∗ < ∞ equipped with the norm ‖ ‖∗. We
observe that that by (5.14) we have

‖T0[(

k
∑

i=1

Wi − peσptV p−1 − qeσqtV q−1)φ]‖∗

≤ C‖
k
∑

i=1

Wi − peσptV p−1 − qeσqtV q−1‖L∞(R)‖φ‖∗.
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A computation shows that

‖
k
∑

i=1

Wi − peσptV p−1 − qeσqtV q−1‖L∞(R) = o(1) as δ → 0.(5.21)

Indeed, let us estimate ‖eσptV p−1‖L∞(R). We have

eσptV p−1 = eσpt





k
∑

j=1

U(t− ξj)





p−1

≤ Ceσpt





k
∑

j=1

eα(t−ξj)(1 + e2(t−ξj))−β





p−1

≤ Ceσpt
k
∑

j=1

eα(p−1)(t−ξj)(1 + e2(t−ξj))−1.

For t ≥ ξj

eσpteα(p−1)(t−ξj)(1 + e2(t−ξj))−1 ≤ Ce(α−2β)(p−1)(−ξj) ≤ Ce(1−αε)ξj

because σp + (α− 2β)(p− 1) = 0. Using that ξ satisfy (2.6), (2.7) for some M > 0
we find for t ≥ ξj

eσpteα(p−1)(t−ξj)(1 + e2(t−ξj))−1 ≤ Cδ(1−αε)((j−1)/α+1) ≤ Cδ1−αε.

For t ≤ ξj

eσpteα(p−1)(t−ξj)(1 + e2(t−ξj))−1 ≤ Ceσpteα(p−1)(t−ξj) ≤ Ceσpt

≤ Ceσpξj ≤ Cδσp((j−1)/α+1) ≤ Cδ1−αε

Therefore

‖peσptV p−1‖L∞(R) ≤ Cδ1−αε.

The difference
∑k

i=1 Wi−qeσqtV q−1 in (5.21) can be handled similarly. This implies
that if ‖h‖∗ < ∞ then for ε, δ > 0 suitably small (5.20) has a unique solution in X .

�

6. Proof of Theorem 1.1

Let us fix an integer k ≥ 2. From Proposition 4.1 there is a function εk(Λ, δ) > 0
and θ > 1/2 such that if ε = εk(Λ, δ) and δ is sufficiently small then ‖E‖∗ ≤ Cδθ.
We claim that for δ > 0 small enough and ε = εk(Λ, δ) there exists a solution φ to
the nonlinear projected problem

Lφ+ E +N(φ) =

k
∑

i=1

ciZ̃i,(6.1)

such that ‖φ‖∗ ≤ Aδθ, for a suitable constant A > 0. Here Z̃i are the functions
defined in (5.2). Indeed, let T be the operator defined in Proposition 5.1. Then we
obtain a solution of (6.1) if we solve the fixed point problem

(6.2) φ+ T (E −N(φ)) = 0.

Let us consider the Banach space X of all continuous functions φ : R → R with
‖φ‖∗ < +∞ with the norm ‖ ‖∗. Let A > 0 . Then for φ1, φ2 ∈ E with ‖φi‖∗ ≤ Aδθ,
i = 1, 2 one can check that

‖N(φ1)−N(φ2)‖∗ ≤ CAδ
a‖φ1 − φ2‖∗
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for some a > 0. We conclude from this estimate and the boundedness of the
operator T that the fixed point problem (6.2) has a unique solution φ in the region
‖φ‖∗ ≤ Aδθ for some suitably chosen A. We will write this solution as φ(Λ).

To find a solution of (2.9) it remains to verify that one can choose Λ = (Λ1, . . . ,Λk)
such that the constants ci in (6.1) are all zero. Testing equation (6.1) against
Zj(t) = U ′

0(t− ξj) for i = 1, . . . , k, we obtain
∫ ∞

−∞

φLZj +

∫ ∞

−∞

N(φ)Zj +

∫ ∞

−∞

EZj = cj

∫ ∞

−∞

Z̃jZj .

Therefore ci = 0 for all i is equivalent to
∫ ∞

−∞

φLZj +

∫ ∞

−∞

N(φ)Zj +

∫ ∞

−∞

EZj = 0(6.3)

for all j. A calculation shows that
∫ ∞

−∞

φLZj +

∫ ∞

−∞

N(φ)Zj = o(δ)

as δ → 0, where o(δ) a continuous function of Λ that tends to 0 is uniformly in the
considered region as δ → 0 (for this it is important that ‖φ‖∗ ≤ Cδθ with θ > 1/2).
Write E(v) = v′′ − α2v + e−σptvp + e−σqtvq. Since E = E(V ) and Zi = ∂ξiV we
have that

∫ ∞

−∞

EZi =

∫ ∞

−∞

E(V )∂ξiV = ∂ξiI(V )

According to the expansion for I(V ) in Proposition 3.1 and using the relations
(2.6), we see that the system (6.3) is equivalent to

∇ϕ(Λ) + o(1) = 0,

where the quantity o(1) goes to zero uniformly on the considered region for the
parameters Λi and depends continuously on them. We recall that the functional ϕ
possesses a unique critical point Λ∗, which is nondegenerate. Therefore the above
equation has a solution that is close to Λ∗ for δ > 0 small. �
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