Simultaneous Blow-up for two species Patlack-Keller-Segel System in \mathbb{R}^2.

Karina Vilches Ponce‡

August 19, 2016

Abstract

The collective synchronised movement of unicellular organisms attracting or repelling by chemical signals are defined as chemotaxis. Evelyn Fox Keller and Lee Segel in [4] proposed one Parabolic-Parabolic system (PKS) to model chemotaxis. The general PKS system is the parabolic-parabolic system

$$
\begin{align*}
 c_t &= \nabla \cdot (k_1(c,v)\nabla c - k_2(c,v)c\nabla v) + k_3(c,v), \\
v_t &= D_\nu \Delta v + k_4(c,v) - k_5(c,v)v,
\end{align*}
$$

(1)

where $x \in \Omega \subset \mathbb{R}^n$, $t \in \mathbb{R}^+_0$ and the biological meaning of variables are: c organism density, v chemical concentration, k_1 organism kinetic movement, k_2 chemical sensibility, k_3 organism fitness function, D_ν chemical diffusion, k_4 chemical production, k_5 chemical degradation, subject to Neumann or Dirichlet boundary conditions and smooth boundary $\partial \Omega$, positive initial data are considered $u(x,0) = u_0$ and $v(x,0) = v_0$. It was conjectured by S. Childress & J.K. Percus in [1], that in a two-dimensional domain there exists a critical number C such that if $\int u_0(x)dx < C$ then the solution exists globally in time and if $\int u_0(x)dx > C$ blow-up happens. To different versions of the Keller-Segel model the conjecture has been essentially proved, finding the critical value $C = 8\pi/\chi$.

In the case of several chemotactic species a new question arise with the objective to extend the S. Childress & J.K. Percus’s conjecture,

Is there a critical curve in the plane of initial masses $\theta_1\theta_2$ delimiting on one side global existence and blow-up on the other side?

Let consider the general PKS parabolic-elliptic system,

$$
\begin{align*}
 \partial_t u_1 &= \Delta u_1 - \chi_1 \nabla (u_1 \nabla v_1) - \chi_2 \nabla (u_1 \nabla v_2) \\
 \partial_t u_2 &= \Delta u_2 - \chi_3 \nabla (u_2 \nabla v_1) - \chi_4 \nabla (u_2 \nabla v_2) \\
 \quad - \Delta v_1 &= \alpha_1 u_1 + \alpha_2 u_2 \\
 \quad - \Delta v_2 &= \alpha_3 u_1 + \alpha_4 u_2
\end{align*}
$$

(2)

*Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule
†Trabajo conjunto con Carlos Conca & Elio Espejo Arenas.
‡Financiado por CONICYT PAI/Academia 79150021 2016-2018.
where \(x \in \mathbb{R}^2, t > 0, u_1(x, 0), u_2(x, 0) \in L^1(\mathbb{R}^2, (1 + |x|^2)dx) \). The biological meaning of variables are: \(u_i \) is the population density, \(v_i \) represent the chemo-attractant concentration, \(\chi_i \) population sensibility at the chemical substance. The first optimal response to this question for one simplified version of (2) it was given in [2,3] and consider two positive chemotactic populations producing the same chemo-attractant and each population have one different sensibility to the chemical signal. The sharp curves funded in [2,3] are defined by

\[
8\pi \left(\frac{\theta_1}{\chi_1} \mu + \frac{\theta_2}{\chi_2} \right) - (\theta_1 + \theta_2)^2 = 0, \quad \theta_1 = \frac{8\pi}{\chi_1}, \quad \theta_2 = \frac{8\pi}{\chi_2}\]

Arising a new open question proposed in [2,3]

Is the Blow-up for \(u_i \) and \(u_2 \) be simultaneous?

The simultaneous Blow-up occurs when \(u_1 \) and \(u_2 \) have the same existence time. The method applied to prove the simultaneous Blow-up consist in the following step:

1. The entropy comparison criterion which implies that if one is bounded then another entropy too.
2. The Vallée Poussin criterion to prove uniform integrable or equi-integrable of solutions.
3. Equi-integrability porperty permits to obtain \(L^p \) bounds for all \(p \in (1, +\infty) \).
4. The Moser-Trudinger and Zigmud-Calderón inequalities to obtain \(L^\infty \) bound.

The main result is: **if one solution of (2) have bounded entropy, then the two solutions are bounded in \(L^\infty(0, T) \) or equivalently the Blow-up should be simultaneous.**

References

