BUBBLE TOWER SOLUTIONS FOR SUPERCRITICAL ELLIPTIC
PROBLEM IN RV
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ABSTRACT. We consider the following problem

—Au+u=uP+Iud, uw>0 inRY,

u(z) >0 as |z] = oo,
where p = p* + ¢, with p* :%,1<q< %f% ifN>4,3<qg<b5if N=3,
A > 0, and ¢ is a positive parameter. We prove that for € > 0 small enough, it
has a solution with the shape of a tower of bubbles.

Keywords: elliptic equation, non-uniqueness, bubble-tower solutions

1. INTRODUCTION

We are interested in the elliptic equation

(1.1)

— Au+u = uP + \u?, u>0 in RY,
u(z) =0 as|z] = oo,

where N > 3, A > 0 and 1 < g < p. This problem arises in the study of standing
waves of a nonlinear Schrodinger equation with two power type nonlinearities, see
for example Tao, Visan and Zhang [28].

If p = ¢, equation (1.1) reduces to

—Au+u=uP, u>0 in RY,
(1.2)

u(z) = 0 as|z| = oo,

after a suitable scaling.

Thanks to the classical result of Gidas, Ni and Nirenberg [15], solutions of (1.1)
and (1.2) are radially symmetric about some point, which we will assume is always
the origin.

It is well known that problem (1.2) has a solution if and only if 1 < p < %
Existence was proved by Berestycki and Lions [2], while non-existence follows from
the Pohozaev identity [26]. Uniqueness also holds and was fully settled by Kwong
[16], after a series of contributions [4, 17, 23, 24, 22, 21]. See also Felmer, Quaas,
Tang and Yu [10] for further properties.

Concerning (1.1), the work of Berestycki and Lions [2] is still applicable if 1 <
qg<p< %, and one obtains existence of a solution. If p,q > % there is no
solution, again from the Pohozaev identity.

Recently, Davila, del Pino and Guerra [5] proved that uniqueness does not hold
in general for (1.1), if 1 < ¢ <p < % More precisely if N = 3, the authors

1



2 W. CHEN, J. DAVILA, AND I. GUERRA

obtained at least three solutions to problem (1.1) if 1 < ¢ < 3, A > 0 is sufficiently
large and fixed, and p < 5 is close enough to 5.
Let us mention some contributions to the question of existence for (1.1) when
one exponent is subcritical and other is critical or supercritical. If 1 < ¢ < p = %
n (1.1), Alves, de Morais Filho and Souto [1] proved:
e when N > 4, there exists a nontrivial classical solution for all A > 0 and
1<q< {2
e when N = 3, there exists a nontrivial classical solution for all A > 0 and
3<qg<b;
e when N = 3, there exists a nontrivial classical solution for A > 0 large
enough and 1 < ¢ < 3.
Moreover, Ferrero and Gazzola [11] proved that for ¢ < % < p, there exists
A > 0, such that if A > X, then (1.1) has at least one solution, while for ¢ < % <p,
there exists 0 < A < X such that if A < A, then there is no solution.
In this paper, we are interested in multiplicity of solutions of (1.1), and for this
we take an asymptotic approach, that is, we consider
{—Au—l—u_up—l—)\uq, u >0 in RV,

(1.3)
u(z) =0 as |z] = oo,

where p = p* + ¢, with p* = J+2

=N3> A >0 and € > 0 are parameters, and ¢ satisfies

N+2
(1.4) 1<q<N+ if N>4; 3<q<5 if N=3.

Our result can be stated as follows.

Theorem 1.1. Let A > 0 and let q satisfy (1.4). Given an integer k > 1, then
there exists g > 0 such that for any e € (0,0), there is a solution u.(z) of problem
(1.3) of the form
(1.5)
—lG=Dt =51 A+ Y52
N—2 9 pT—q (A) 2
ue(z) = (N(N =2))7 7 : = (1 +0(1)),

1 2

j=1 (1 + E*ﬁ[(jfl)ﬂ*,q](A;)72|Z|2)

where the constants A} >0, j =1,2,...,k, can be computed explicitly and depend
on k,N,q.

The expansion (1.5) is valid if %5%[(%1)*:)*—%] < |2| < Cem=li-Dti==]
with some 7 € {1,2,--- ,k}, and o(1) — 0 uniformly as € — 0 in this region.

The solutions described in this result behave like a superposition of “bubbles” of
different blow-up orders centered at the origin, and hence have been called bubble-
tower solutions. By bubbles we mean the functions

N-—-2
ono2 . N-—2
(1.6) wy(z) =an————Fx=, with ay= (NN -2)) ©,
(w2 +12*) 7=
where p > 0, which are the unique positive solutions of

—Aw=wP inRY,

(except translations).
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u(0) = [Jufloo

p* P 0

FIGURE 1. Left: u(0) vs. p for A large and fixed. Right: u(0) vs.
A for p =p* 4+ ¢, € > 0 small and fixed.

Based on numerical simulations we present bifurcation diagrams for solutions of
(1.3) where ¢ satisfies (1.4). In Figure 1 (left) we show the bifurcation diagram as
a function of p for a fixed large A, and in Figure 1 (right) we show the diagram as
a function of A for p = p* 4+ ¢, ¢ > 0 small and fixed. In both diagrams we observe
branches of solutions, with the upper part having unbounded solutions as ¢ — 0
or A = oo. We believe that the solutions constructed in Theorem 1.1 are located
on these upper branches, and are shown in the diagrams for the cases of 1 and 2
bubbles.

Bubble-tower solutions were found by del Pino, Dolbeault and Musso [6] for a
slightly supercritical Brezis-Nirenberg problem in a ball, and after that have been
studied intensively [3, 7, 8, 9, 13, 14, 18, 19, 20, 25]. In particular we mention the
work of Campos [3] who considered the existence of bubble-tower solutions to a
problem related to ours:

—Au=u""* 44l u>0 inRY;
u(z) >0 as |z] = oo,

with%<q<p*:%,N23.

For the proof we consider a variation of the so-called Emden-Fowler transforma-

tion:
. 1\ 7T
J— P —
v(x)—(p ) )

2
with

r=|z|=e" 271””, x € (—00,+00).
Then finding a radial solution u(r) to (1.3) corresponds to solving the problem
Lo(v) = aevP e £ \gye P —DTyd in (—o0, +00);
(1.7) v(z) >0 for z€ (—o0,+00);

v(iz) =0 as |z] = oo,
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where

2
2
(1.8) Lo(v) = —v"+v+ (m) s
is the transformed operator associated to —A + Id, and «., Sx are constants.
Under the Emden-Fowler transformation the bubbles w,, take the form

N-—2

N-—2
4N 4 4 -7z
_a= (= —(z=¢) —ws (a—§)
(1.9) Wz —¢) (N—2> e (l—l—e N )

with = 67%5, and solve
W' —W + WP =0, in (—o0,400);
w’(0) = 0;
W(z) >0, W(x)—0 as [z]— oco.

In Section 2, we build an approximate solution to (1.7) as a sum of suitable
projections of the transformed bubbles W centered at 0 < & < ... < & with £ —
0o. After the study of the linearized problem at the approximate solution in Section
3, and solvability of a nonlinear projected problem in Section 4, we perform a
Lyapunov-Schmidt reduction procedure as in [12, 18, 3]. Then the problem becomes
to find a critical point of some functional depending on 0 < & < ... < &. This is
done in Section 5 where Theorem 1.1 is proved.

From the technical point of view, one difficulty is due to the form of the linearized
operator. As r — oo dominates —A + I (or £y as x — —oo after the change
of variables) while near the regions of concentration the important part of the
linearization is A + p*wz**l. This is taken into account in the norm we use for the
solutions of linearized problem, and it is more naturally written for the functions
after the Lane-Emden transformation. This is different from may previous works,
but is already contained in [5].

2. THE FIRST APPROXIMATE SOLUTION

In this section, we build the first approximate solution to (1.3). In order to do
this, we introduce U, as the unique solution of the following problem

—~AU, 4+ U, =wP" inRY,
(2.1) PR
Uu(z) =0 as |z| = oo,
where w,, are the bubbles (1.6). We write
Un(z) = wu(2) + Ryu(2).
Then R, (z) satisfies
—AR,(2) + Ru(2) = —w,(2) inRY, R,(2) =0 as |z] = oo
We have the following result, whose proof is postponed to the Appendix.

Lemma 2.1. Assume 0 < p <1, we have
(a) 0 < Up,(2) <wy(z), for z€RN.
(b) One has

Uu(z) <Cp™T 2| N2 for |2 >R,
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where R is a large positive number but fized.
(c) Given any p > 0 small, we have

N-—-2

(2.2) |RM(2)|§C|M|% for N>3, |z>1.
z
,u_¥ for N > 5;
(2.3) [Ruz)] < CQulog: forN=4;  [s| <.
/ﬁ for N = 3.
,LL?N;GW for N > 5;
(24) |Ru(z) < C{plogry " for N=4 G <<l
u% for N = 3.

We define the following Emden-Fowler transformation

* 1 2
p —

v(x)—m(r))—( 2 >u<> r=le = ST

with z € (—o00,400). Using this transformation, finding a radial solution u(r) to
problem (1.3) corresponds to that of solving the problem (1.7). where

2(p* —q)

2¢e
* 1\ -1 g p*—1
Qe = (p 2 ) ) ﬁN = (p 2 )

We observe that L is the transformed operator associated to —A + Id.
Define

*—1

Ve(z) = T(UL)(r), withr=e "2 % = e~ v,
Then Ve (x) is the solution of the problem
LoVe(z) =W(x —£)P  in (o0, +00);
{Vg(a:) —0 as |z] = oo.
We write
Ve(z) = W(z = £) + Re(x),

where W is given in (1.9) and R¢(z) = T(R,)(r). By the Emden-Fowler transfor-
mation and as a consequence of Lemma 2.1, we have the following estimates.

Lemma 2.2. For & > 0, we have
(a) 0 < Ve(z) < W(z — &) = O(e 278, for x €R.
(b)

N -2
(2.5) Ve(z) < Ce%mefg, for —oco<zx < —

log R,

for R >0 is a fized large number as Lemma 2.1.
(c) For N > 3, there is a positive constant C, such that

e~lz—¢l if =<0;

I&@HSC{

e~ |v—¢lg—x=z min{z,¢} if x>0.
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Define
Zg(w) 1= 0¢Ve(x) = 0: W (z — §) + O¢Re ().
Note that 9:W (x — &) = O(e™1*~¢l) and
2

IeW(x —¢) = —mNT (Opwp(r))
2 ~ L
(26)  Ze(w) = ——5HT (Zu(r)) with  Z,(2) = 9,U,(2),
(2.7) O Re(x) = —m/ﬂ- (O Ru(r)) -
Then from (6.1), (2.7) and Lemma 2.2 (c), we have for N > 3,
e~ lz=¢l if x<0;

|0 Re (2)] < C{

e~ lr—tlgmwZg min{z.&} jp o > 0.
Therefore

Ze(z) = O(e™1*=¢hy for ¥V z € R.
Moreover, from (6.2) and (2.6), we find

N -2

| Ze(z)] < Censvet for —oco<z<—

) log R,

for a fixed large R > 0.

Let > 0 be a small but fixed number. Given an integer number k, let A;, for

j=1,---  k, be positive numbers and satisfy
1
(2.8) n<A;<-—.
n
Set
(2.9) g =e™-miA; and p; =eV2U TV @R A

for 5 =2,--- k. We observe that

) A
M‘]-i-_lngiz /]X—i__l’ ]:177k_1
K j
Define k points in R as
ﬂjzeiﬁ(ﬁj, j::l’...,k_

Then we have that
0< <& < <&y

and
(2.10) {51 = —prg loge — S5 log Ay, |
§ — &1 :—logs—¥log[\‘j‘il, j=2,- k.
Set

(211) Wj=W(z—§&), R;=Rg(x), Vi=W;+R; V=)V,
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We look for a solution of (1.3) of the form u = Z?:l Uy, + corresponds to find
a solution of (1.7) of the form v = V + ¢, where V is given by (2.11) and ¢ = T (¢)
is a small term. Thus problem (1.7) becomes

Es(d)) = N(¢) +FE in (—OO, —I—OO);
(2.12) ¢(x) >0 for z € (—o0,400);

o(x) >0 as |z|] — oo,

where
Le(6) = Lo(9) — ae(p” +e)e™ VP Tl — Agye” @07V,
N(@) = 0 [(V4+ g+ = VI (pf 4 )V g
+A\Bye” @ 0w [(V +¢)7 =V —qVilg]
and

E = VP e - Lo(V) + \oye @ 07y

k
= eV NCWE 4 ABye POy,
j=1
where Ly is defined by (1.8).
3. THE LINEAR PROBLEM

In order to solve problem (2.12), we consider first the following problem: given

points & = (&1, -+, &), finding a function ¢ such that for certain constants ¢y, ¢, - - - , ¢k,
k
Le(¢) =N(d)+E+ > ¢;jZ; in (—o0,+00);
(3.1) : .
lim ¢(x) = 0;

|z|— 00
JgZijp=0, Vj=1,--k,
where Z;(x) = Z¢,(x) = O, Ve, (x) for j =1,2,--- | k.
To solve (3.1), it is important to understand its linear part, thus we consider the
following problem: given a function h, finding ¢ such that

k
L(p)=h+ z_:l ¢;jZ; in (—o0,+00);
(3.2) lim ¢(z) :]6;

|| — o0
IRZJQS:Ov ijla"'vka
for certain constants c;.

Now we analyze invertibility properties of the operator £. under the orthogo-
nality conditions. Let o satisfy

(3.3) 0<0’<H1in{q—1,17(N+2)(2q_1) 3q—p}.

N+6 T2
We define the real number M as follows
{ 0, if 1> 45 +o0;

(3.9 e
max{0,v}, if 1< = +o,
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where 7 satisfies

(L e (2
N_—2"7 ~a\N_2) -

We define the following norms for functions ¢, h defined on R,

-1

k
(35) el = sup e TG o) 4sup [ S e G| g(a),
z<—M S
and
-1
k
Ihlle = sup [ S"e o=l |  |aa)).
zER j=1

The choice of norm here is motivated by the presence of 2 regimes in the solution
of the linearized problem. Near the concentration points £; we have a right hand
side of the form |h(z)| < Ce~?1*~&l and near these points the dominant terms in
the linear operator L. are

¢ + ¢ — a:(p* +e)e VP g,

so we can expect the solution ¢ to be controlled by |¢(z)| < Ce=1*=&l, For z <0
the dominant part of the linear operator is

2 \* __i,
(m) € T

Since the right hand side is controlled by e~ ?1*=¢l  we can control ¢ using as
supersolution e(nzto)T ot Actually this will be a super solution for the whole
linear operator for x < —M, where M is defined in (3.4).

The main result in this section is solvability of problem (3.2).

Proposition 3.1. There exist positive numbers €9, and C > 0 such that if the
points 0 < & < & < -+ < & satisfy (2.10), then for all 0 < & < g9 and all
functions h € C(R;R) with ||h]|« < 400, problem (3.2) has a unique solution
¢ =: Tc(h) with ||¢||« < +00. Moreover,

(3.6) [6ll« < Cllhllx  and |ej| < O[]

We first consider a simpler problem
k

Lo(¢) = ac(p* +e)e VP T 1g = h+ 3 ¢;Z; in (=00, +00);
j=1
(3.7) lim ¢(x) = 0;
|z|—00

IRZ](ZS:O, ijl,"',k,
for certain constants c;, here Lo is defined by (1.8).

Lemma 3.2. Under the assumptions of Proposition 3.1, then for all 0 < € < gq
and any h, ¢ solution of (3.7), we have

(3.8) [l < CllRlxxs
and
(3.9) lej| < Cllh]s.
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Proof. To prove (3.8), by contradiction, we suppose that there exist sequences ¢,
hy, €n and ¢} that satisfy (3.7), with

We get a contradiction by the following steps.
Step 1: ci = 0asn— +oo.
Multiplying (3.7) by Z" and integrating by parts twice, we get that

c?/ AVAS
R

(3.10) = — [ h,Z} —|—/ {EO(Zf) —ag, (p* —|—£n)65"mVp*+E"71Zi” On.
R R

M-

<
Il
—

Note that
/RZ?ZZl = C(Sij + 0(1),

where d;; is Kronecker’s delta. Then (3.10) defines a linear system in the ¢;s which

is almost diagonal as n — oo.
Since Z}'(z) = O¢gr Ven (z) = O(e~1#=&'1), we then have

k

/hnZ? < CIIhnII**/ > el el g
R R j=1
(3.11) < Ckllhnll**/e“y‘dySCllhnll**~

R

Moreover, Z* satisfy
Lo(Z7) = p WP "Mz = &) 0 W (w = &),

so we get

(3.12) = 0(1)]|¢nl|-

[ [0z = ac, 07 + ey =iz g,
R

From (3.10)-(3.12), we obtain
(3.13) €8] < Cllnllon + 0(D)l| 60l
Thus lim ¢ = 0.

n—00

Step 2: For any L >0, anyl € {1,2,--- ,k}, we have

(3.14) sup |pn(x)] = 0, asmn — oco.
wel — L&+ 1]

Indeed, suppose not, we assume that there exist L > 0 and some [ € {1,2,--- ,k}
such that

|pn (zpn1)| > ¢ >0, for some z,; € [§' — L, & + L.
By elliptic estimates, there is a subsequence of ¢,, converging uniformly on compact
sets to a nontrivial bounded solution ¢ of

Lo(¢) =p" WP "z - &),
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where & = lim ¢'. By nondegeneracy [27], it is well known that ¢ = cZ; for some
n—oo

constant ¢ # 0. But taking the limit in the orthogonality condition fR Zl'¢n = 0,
we obtain ¢ = 0, which is a contradiction. Thus (3.14) holds.
Step 3: We prove that ||¢n|« — 0 as n — oo.
Claim: For any L > 0 and j € {1,2,--- ,k}, we have
-1

k
(3.15) sup D e 7 g (a)] =0,
R\Ule[f‘?*L,E?‘i’L] j=1
and
(3.16) sup e (W2t g (2)] 0,

x<—M
as n — +00.
By the definition of || - ||« in (3.5), using (3.14), (3.15) and (3.16), we get that
|pnlls« — 0 as n — oc.
Now we prove the above claim. We note that
k

k
b+ 3 27 < (Collhnllae + 0(6n]1)) - =11, with Co > 0.
j=1

j=1
For z € R\ UF_, [€ — L, & + L], let us define
k

Ual@) = (Colhnll**+e“ sup ]|¢n<x>|+o<||¢n||*>>26“'“?'

Uk [er—LEr+L j=1

k
+o Z e~ Olz—E]]
i=1

with ¢ > 0 small but fixed and 0 < & < o. Then by choosing suitable large L > 0,
we get

LO(J}n(fE)) —ae, (p* + En)eanva*—i_an_lijn(x)
> Lo(¢n(2)) — oz, (p" +en)e VP 1, (2).
On the other hand, we have that for any L > 0 and j € {1,2,--- , k},
Moreover, there exists R > 0 large enough, such that
Un(R) > ¢n(R),
and 5

By the maximum principle, we get
On(x) < 1/~Jn(:1c) for z € [-R, R]\U;?ZI [5;1 — L& ol
Similarly, we obtain ¢, (z) > —thn(z) for = € [-R, R]\ Uk, [€0 — L,&" + L]. Thus
|6n(2)] < Yn(x) for x€[-R,R\US_, [€} — L,&" + L].
Letting R — +00, we get
|6n(@)] < dn(z) for @€ R\UL, [€F — L& + ).
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Letting o — 0, for z € R\ U?Zl (€} — L, &} + L, we have that

k
|¢n<x>|s<co||hn||**+eﬂ sup |¢n<:c>|+o<||¢n||*>>Ze—”—f?.
j=1

Uk_ (€0 —L, &0 +L]

So (3.15) holds.
For x < —M, let p > 0 small and C; > 0 be chosen later on, we define

Yn(2) = C1 (Collhnllxx + o([|#nll+)) e(F=ztoIoe—0t] + peﬁm_
By the maximum principle, we get
On (1) < tpp(z) for x e [-R,—M],

if R > 0 is large enough. By a similar argument, we obtain ¢, (x) > —i,(z) for
x € [-R,—M]. Thus

|¢n ()] < ¢hn(x) for e [-R,—M].
Let R — 400, we get
|on ()] < Pp(x) for x e [—oo,—M].
Let p — 0, we have
60(@)] < C1 (Collhnllox + o(llull.)) €T=FD7e=E for o € [—o0, —M].

So we obtain that (3.16) holds.
Moreover, estimate (3.9) follows from (3.13) and (3.8). O

Proof of Proposition 3.1. From Lemma 3.2, for ¢ and h satisfying (3.2), we
then have

61l < € (Ihllsx + e~ —D2v1 g, )
and
63 < C (hllaw + @ =07V, ).

In order to establish (3.6), it is sufficient to show that

(3.17) le” @ =TV g < o(1)] @]
Indeed,
& —1

A 0 TN B Dt I e

r<—M X

= j=1

& -1
(3.18) +osup [N eolensl e*@**q)zvﬂgb’ = Q1 + Q2.
x>—M j=1

Now we estimate (1 and @2 respectively, we first have

@1 < C sup e"‘m—fl\|¢($)|e—(p*—q)qu—1
z<—M

(3.19) < Qe la-D& sup ef(ﬁ+g)ze‘751|¢($)|.
x<—M
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For Qs, if —M < x <&, then we have

k
e~ P DTyl < Ze—(p*—q)we—(q—l)lw—ﬁjl < Cel2e=P" —Dz—(e-D&

Jj=1

C'max {ce_(p*_q)51 , e_(q_l)fl} .

IN

If x > &, then we have
k
e~ (P —a)ryra-1 Z "=z —(a-Dle=§| < O~ -0z < Ce= (P —0)6

Thus we find
-1

(3.20) Q2 < Cmax {e_(p —0& e=(a-1)¢ } sup Ze“"m &l |p(z)].

x>—M
From (3.18), (3.19) and (3.20), we get
o=@ =DV 1g]. < Cmax {0708 e~ V8 g, = o(1)]|9].

So estimate (3.17) holds.

We now prove the existence and uniqueness of solution to (3.2). Consider the
Hilbert space

H= {¢€H1(R) : /Zjo;:o, Viji=1,2--- k}
with inner product )
60) = [ @0+ oo
Then problem (3.7) is equivalent to ﬁfd ¢ € H such that

(0,9) = /R[ag(p*+5)Vp*+5—1¢+)\que—(p*—q)qu—1¢

Ydz,

2 2
(3.21) + (m> e NG 4 b

for all ¢ € H. By the Riesz representation theorem, (3.21) is equivalent to solve
(3.22) ¢ =K(¢)+h

with h € H depending linearly on h and K : H — H being a compact operator.
Fredholm’s alternative yields there is a unique solution to problem (3.22) for any h
provided that

(3.23) ¢ =K(¢)

has only the zero solution in H. (3.23) is equivalent to problem (3.2) with h = 0.
If h = 0, estimate (3.6) implies that ¢ = 0. This ends the proof of Proposition 3.1.

Now we study the differentiability of the operator T. with respect to £ =
(&1, -+ ,&k). Consider the Banach space

Co={f € CR) : [[fllex < oo}

endowed with the || - ||«x norm. The following result holds.
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Proposition 3.3. Under the assumptions of Proposition 3.1, the map & — T is
of class C*. Moreover,

[DeTe(R)]l+ < C[R]]x
uniformly on the vectors & which satisfy (2.10).
Proof. Fix h € C, and let ¢ = T.(h) for € < gg. Let us recall that ¢ satisfies

k
Le(d)=h+ > ¢;Z; in(—o0,+00);
j=1
lim ¢(z) = 0;
|| =00
fRZj¢:O7 Vj:]w"'aku
for certain constants c;. Differentiating above equation with respect to &, [ €
{1,---,k}. Set Y = O, ¢ and d; = O¢,c;, we have
_  k
L (Y)=h+> d;Z; in(—o0,+00);
j=1
lim Y (x)=0;
|z| =00
fRYZj + 90, 2; =0, Vji=1,---,k,

where

E = Q¢ (p* —I—E)(p* +e— 1)e€1V”*+8_2Z1¢+ )\q(q— l)ﬂNe_(p*_q)IVq_2Zl¢+Clagl Z.

k
Let n =Y — > b;Z;, where b; € R is chosen such that

/nzj =0,
R
that is,

i=1
k
(3.24) > bi/ Z,Z; = / YZ; = / O, 07 = —/ ¢, Z;.
= JRr R R R
This is an almost diagonal system, it has a unique solution and we have
(3.25) |bi] < Cll¢]l-
Moreover, n satisfies

k
L) =g+ > d;jZ; in(—00,+00);
(3.26) o

lim n(z) = 0;
|| =00
fR’I]ZJ‘:O, Vj:]w"'aku
with

k
i=1

From Proposition 3.1, there is a unique solution 7 = T.(g) to (3.26) and
(3.27) I« < Cllglles-
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Moreover, we have
lgllee < Clle VP H2 21| + Clle™ P =02V I2 21 ..
k
+H|c10g Zll s+ Y [Bill1£(Z3) s

=1

(3.28) < Cllll« + lerl +1bi]) < CllA]s,

because [bi] < Cl¢ll, 6l < Cllallee and |ei] < Cllhllue.
By (3.25), (3.27), (3.28) and || Z;||« < C, we obtain that

k
196 @Il < llnll« + > Ibilll Zills < Cllh] e

=1

Besides 0¢, ¢ depends continuously on £ in the considered region for this norm. O

4. NONLINEAR PROBLEM

In this section, our purpose is to study nonlinear problem. We first have the
validity of the following result.

Lemma 4.1. We have

min{p*,2 min{q,2
(4.1) IN@- < C (Il 4 gt
and
min{p*—1,1 min{qg—1,1
(42) 105N (@)« < C (g2 4 g rintet)
for [|o]l. < 1.
Proof. By the fundamental theorem of calculus and the definition of || ||.., we have
[N ()]s
~1
k 1
< a.(p”+e)sup Zeig‘z{j‘ e / [(V +t)P ety +571} 0] dt’
z€R \ T 0
Jj=1
-1
k 1
+AgfBn sup Ze—olw—ﬁj\ e~ (P )z / [(V+t¢)q_1 _Vq—l] ¢ dt‘
z€R ; 0
j=1
= Nl =+ N2.
Using

|al*=b] + (|7 if ¢ > 1
min{|a|?7[b|, [b|7} f0<qg<1,
if p* > 2 and for ||¢]|« < 1, we have

lla+ 6|7 —laf?| < C{

-1 -1

k k
N, < Csup Ze—zﬂm—ﬁjl eamvp*+€—2|¢|2 + C'sup Ze—olw—ﬁj\ 68m|¢|p*+€
z€R =1 z€R j=1
< ClollZ+Cllolz + < Cllgl.
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Similarly, if 1 < p* < 2, we find that Ny < C||¢||2 . Thus we get
Ny < Cllglt,

Moreover, by similar computations as N7, we can conclude that
N < C|g|[ 12,

Thus we get (4.1).
We differentiate N(¢) with respect to ¢, we have

05N (9) = e (p*+e)e™ |(V + @) +71 = V"1 | Agqe™ @ =07 [(V 4 gt — Vi)
By a similar argument as || N(¢)||««, (4.2) holds. 0

Lemma 4.2. Let 0 > 0 satisfy (3.3) and 0 < & < & < -+ < & satisfy (2.10). If
q satisfies (1.4), then there exist T € (3,1) and a constant C' > 0, such that

HEH** < CeT, ||(95EH** < Ce.
Proof. We have
k a
Eo= o (VP V) o (aee - )V 4 |V (S
j=1
k p’ k i
+ (DW= D WP |+ ABne PO
Jj=1 j=1
(4.3) = Ei+E;+E;+E;+E;.
Estimate of Ex:
1 k
|Eq| = Eoese”/ VP Jog th‘ < ngefﬂlrféj\.
0 =

Estimate of Fo: By the Taylor expansion, we have

2¢e
*_ 1\ p -1 .
|Es| = |<<p2 ) P eam_1>vp

1 k
= (ax/ e dt + O(s)e”) VP < Celloge] Ze—alw—ﬁj\,
0

Jj=1

Estimate of FE3: Since

k
[Bs| = (VP = [Y Wy | | <COVPTNY R (w)]

Jj=1 J=1

Thanks to Lemma 2.2, for x < 0, we have

k k
[Bs| < CVPIIN el < oy tlent < era Y eolentl,

Jj=1 j=1
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For 0 <z < &,
|E3| < cvr *12 —|z—&;] e N- 2mln{m§]}

2
k eNFE-(N-ma  if N >4

< CZe_Ulm_gﬂ )

j=1 €5-4q if N =3.

If x > &, for 0 < o < p* — 1, we have

k
|Es| < cyr -1 Ze—\w—fﬂe*ﬁmin{ryéj}
j=1
, k
< OV —lg—w=h < CeV— (N3 ZG*U\I*EJ'I'
j=1

Therefore we get for x € R,

k DT if N> 4

B <oy el T
- 1

j=1 £5—q if N =3.

Estimate of By: If —co <z < %, we have

*

k P k
Bal < [[DoW-¢&)| —-WE—&a) [+ D W@-&)”
= i=2
k ey k )
< p* ZW(I—@) ZW&:—@ ZW(x—éj)p
j=1 j=2 j=2
k Pty "y k )
= [ D W-¢) DWa—&)| Y Wa—g)+Y W—g)
=1 =1 =2 =2

with a positive number 0, satisfying 0 < 6 < p* — 1 — 0. Note that

[

k
ZW(x_gj) ZW(CC—fj)SCE#.
=1 =

Moreover,
k

k *
Z W(x— &) <Ce =" Ze‘”lw_gil.

j=2 j=1

Thus

—olz— +
|E4|<C€ Ze ==&l for —oo<x§¥,
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with 0 < 0 < p* — 1 — 0. Similarly, for S=278 < ¢ < 8L with [ =2, k1,
and z > w, we get
1460 u
|Ey| < Ce ™ ZQ*U\I*EJ'I.
j=1

Therefore for x € R, we have

k
|Ey| < CeE” 267‘7'9675]", where 0 < § < p* —1—o0.
j=1

The estimate of F5 is similar as the previous ones and we get

k
|E5| < Cmax{e,er—a} Z e—clo—&l
j=1
From (4.3) and the previous estimates, for 0 < ¢ < p* —1 — o with o satisfying
(3.3), we have

2 146 q—0c .
max {5|10g5|, eNFI=(N-2)q ET,EP**‘I} if N > 4;
[E]w < C _
max {allogsl,aﬁ,s%@,sﬁ*i} if N =3.

Therefore if ¢ satisfies (1.4), we find that there esists 7 € (3,1) such that
[E]l«x < Ce™.
Differentiating E with respect to & (i = 1,2,--- , k), we have

k
0, E = oc(p'+e)e™ VP10,V = p* > W(w— &) 0, W(x - &)
j=1
+/\[3qu*(7”**‘1)qu*18&1/.
The proof of estimate for ||0¢ E||.« is similar to that of || E||.. O

Proposition 4.3. Assume that 0 < & < & < -+ < & satisfy (2.10). Then
there exists C > 0 such that for e > 0 small enough, there exists a unique solution

d = (&) to problem (3.1) with
[¢ll« < CeT,

for some T € (3,1) satisfying Lemma 4.2. Moreover, the map & — ¢() is of class
Cl for the || - ||« norm, and

|00« < Ce™.
Proof. Problem (3.1) is equivalent to solve a fixed point problem
¢ =T(N(¢) + E) := Ac(9).
We will show that the operator A, is a contraction map in a proper region. Set
Fy={0 € CR) : [I¢ll« < e},

where v > 0 will be chosen later.
For ¢ € F,, by Lemmas 4.1 and 4.2, we get

[A(@)ll« = [T(N(®) + E)ll« < CIIN()]lwx + | E] s
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< C (Wmin{p*,Q}Emin{p*fl,l}‘r + 7min{q,2}8min{q71,1}‘r + 1) em.

Then we have A.(¢) € F, for ¢ € F, by choosing v large enough but fixed.
Moreover, for ¢1, ¢2 € F,, by writing

N(d) — N() = / N’ (g + H(61 — 62))dt (61 — b).

By Proposition 3.1 and using (4.2), we find
[4=(61) = Ac(@2)ll« < ClIN (1) — N(2) |«

min{p*—1,1} min{g—1,1}
< o (mpyhe. ) + (mg o 61— sl

Ce”||¢1 — 2|l

with some x > 0. This implies that A, is a contraction map from F, to F,. Thus
A has a unique fixed point in F.
Now we consider the differentiability of £ — ¢(£). We write

B(£,¢) == ¢ —T:(N(¢) + E).
First we observe that B(&, ¢) = 0. Moreover,
9 B(E, 9)[0] = 0 — T=(6(95(N(9)))) = 0 + M(0),

AN

IN

where
M(0) = =T=(0(9(N(9))))-
By a direct calculation, we get
IM0)][« < Cll6(06(N(9)))[l4x < Ce™[|0]]-

So for € > 0 small enough, the operator d,B(&, ¢) is invertible with uniformly
bounded inverse in || - ||.. It also depends continuously on its parameters. Let us
differentiate with respect to &, we have

9 B(§,¢) = —(0:T)(N(9) + E) = T((9: N)(§, ¢) + O E),
where all these expressions depend continuously on their parameters. The implicit
function theorem yields that ¢(€) is of class C! and

ded = —(05B(&,0)) '[9 B(&, ¢)]
so that
0@l < C(IIN(D)[lax + [1Elsx + (O N)(E, d)llsx + ([0 Elsx) < Ce™.

5. THE FINITE-DIMENSIONAL VARIATIONAL REDUCTION

According to the results of the previous section, our problem has been reduced
to find points & = (&1,&2,- -+ ,&k), such that

(5.1) c;j(€)=0 forallj=1,--- k.
If (5.1) holds, then v =V + ¢ is a solution to (1.7), and u = Z?:l Uy, +1 is the

solution to problem (1.3) with ¢ = T ~1(¢).
Define the function Z. : (RT)¥ — R as

Z:(§) == LI(V + ¢),
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where V is defined by (2.11) and I, is the energy functional of (1.7) defined by

Lot 2 2 1 2 B A 2
Is(v) = 5/ (|1) (I>| +|'U| )diE+§ (m) / e N*2z’U dx

1 oo . 1 oo .
S L / el T e — —— Ay / e~ =Dy ity
p*+e —oo q —oo

We have the following fact.

Lemma 5.1. The function V+¢ is a solution to (1.7) if and only if € = (&1, , &)
is a critical point of T.(§), where ¢ = ¢(§) is given by Proposition 4.3.

Proof. For s € {1,2,--- ,k}, we have

9e,I:(§) = 0. (I:(V + ) = DI(V + ¢)[0,V + 0¢.¢]
k k
= ;Cj/RZj[aﬁs‘/—f—ags¢] :;cj (/R Zstdijo(l)),

where o(1) — 0 as e — 0 uniformly for the norm || - ||.. This implies that the above
relations define an almost diagonal homogeneous linear equation system for the c;.
Thus ¢ is the critical point of I. if and only if ¢; =0 for all j =1,2,--- k. (I

Lemma 5.2. The following expansion holds
Z:(§) = I(V) + o(e)
as € — 0, where o(g) is uniform in the Cl-sense on the vectors & satisfying (2.10).

Proof. By the fact that DI.(V +¢)[¢] = 0 and using the Taylor expansion, we have
1
L) ~ (V) = LV +0) ~ LV) = [ DLV + 1)
0
1 “+o0
= / tdt / (N(¢) + E)odx
0 —0o0
1 +oo . .
+(p* +6)a5/ tdt/ e [Vp tel (V4 tg)P +5*1] $*dz
0 —o0

1 “+oo
+AﬂNq/ tdt/ e~ Wm0 [yaml (V4 19)171] ¢ da.
0 —00

Since [[¢]|« < Ce™ and [|E||,« < Ce™ with 7 > 3, we get
T.(€) = I(V) = O(e™") = o(e)

uniformly on the points ¢ which satisfy (2.10).
Moreover, differentiating with respect to £, we have

O, (T(§) — I.(V)) = /01 /:o 9. [(N(¢) + E)o|tddt
+O¢€(p* +¢) ‘/01 tdt /J;:o eszags ({Vp*Jrsfl . (V n t(b)p*jLE*l} ¢2) iz

1 “+o0
+ABng / tdt / e~ W mDTg ([VITh = (V + )17 ¢%) da.
0 —00
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By the fact that [|0¢¢||. < Ce™ and ||9¢E ||« < Ce™ with 7> £, we deduce that
Oe, (Z:(8) = I(V)) = O(e™") = oe).

Now we consider the energy functional of problem (1.3), which is defined by
1 1 . A
J(u) == Vu2+u2—7/ up+1+8——/ kans
() 2/1%N(| | ) p*+1+¢ ]RN|| q+1 RN||

By a direct calculation, we have that

N-—1
(5.2) = (521) o)

where V is defined by (2.11), wy_1 is the volume of the unit sphere in RY and
U(z) = Z?:l Uy, (z) with U, satisfying problem (2.1).
We give the following expansion of J(U), whose proof is in the Appendix.

Lemma 5.3. Assume that (2.8) and (2.9) hold, then we have the following expan-
sion:

(5.3) J(U) = a1 + ase — p(A1,- -+, Ag)e + aseloge + o),

where

N42—(N-2)q

A\ T
(G4)  @(Ar,-e M) = a7 —G5ZIOgA +CLGZ( H1>

and as € — 0, o(¢) is uniform in the C'-sense on the A;’s satisfying (2.8), and
CR L e
= G T
k 1
Pt 10/7\,“ /]RN TP~ 1+ |Z1|V2)¥
ds = (N4;V2)2 (a;?\;+1 /RN i |12|2)Ndz)
XZ< Z:; N+2—2(N—2)q)’

A / 1 d
ay = — z
1 o\ (N=2)(g+1) )
a1 (1 |

(N —2)? p*+1/ 1
= - 7d
5 AN\ L A PN

. 1 1
_ p 1
ag = « dz
N /RN (14 |22)727 |2V 2

Now we are ready to prove our main result.
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Proof of Theorem 1.1. Thanks to Lemma 5.1, we know that
k
u=Y U, +1 withy =T "(¢)
j=1

is a solution to problem (1.3) if and only if £ is a critical point of Z. (&), where the
existence of ¢ is guaranteed by Proposition 4.3.

Finding a critical point of Z.(¢) is equivalent to find that of Z(¢), which is
defined as

5 N-1\""twy, a
Ia(g):_ B B Ia(ﬁ)—i-?—l—ag—i—aglogg.

On the other hand, from Lemmas 5.2 and 5.3, using (5.2), we have

Z(€)

N—-1
(V) +o(e) = (%) le_l J(U) + o(e)

N -1 WN-1

as € — 0, where p(A) is defined by (5.4) and o(¢) is uniform in the C'-sense. Then
we have

2 \V*' 1
= <—) [a1 + age — @(Aq,- -+, Ag)e + azeloge] + o(e),

(5.5) Z(§) = p(A) + o(1),
where o(1) is uniform in the C'-sense as ¢ — 0.
We set s1 = Ay, 55 = A{X—il, then we can write (A1, -, Ag) as
N+42—(N—2)g k ) N-—2
o(s1,-,sk) = ass; 2 —a5k10g31—Z[a5(k—j+1)logsj—a65j2 }
j=2
k
= @1 - Z @ja

j=2

with
N+42—(N-2)q

p1 = (45, 2 — a5k10g S1

and

N-—-2

¢j = as(k—j+1)logs; —aes; >, j=2,--,k

We note that

2
B 2a5k Nt2—(N—-2)q

5.6 =

>0 ! (a4<N+2—(N—2>q>>
is the critical point of ¢1, and

2
_ 2&5(k—]+1) N-2 .

5.7 = =92 ...k

( ) SJ < (N _ 2)0/6 ’ J 9 s vy

is the critical point of ¢;. Moreover
427/1/(51) <07 @_/]/(EJ)<05 .]:27 ak'
So (51, 89, , 8k) is a nondegenerate critical point of ¢(s1,- - ,sk). Thus

N o _ _
A* = (81,8251, 838281, - , 8k X -+ X 8281)
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is a nondegenerate critical point of p(A). It follows that the local degree deg(Vp(A), O, 0)
is well defined and is nonzero, here O is an arbitrarily small neighborhood of A*.
Hence from (5.5), for ¢ > 0 small enough, we have that deg(V¢Z.(€),0,0) # 0,
where O is a small neighborhood of ¢* = (&5, - - - ,&5) and

* . 1 1 N —2 o B .
§ = [(J—1)+p*_q]logg— 5 log (5,51 +51), forVj=1,-- k.

So £* is a critical point of 7. (€), which implies there is a critical point of Z..

Furthermore, if for some i, |z — &| < Cp with some Cy > 0, then we have
6 = o(W(x — &) Thus $(j2)) = T-2(6(z)) = o(wy,) for Sy < |o| < Cpi
Moreover, from (c) of Lemma 2.1, we get that Ry, = o(wy,) for Zu; < |z < Cp,.
Therefore we obtain (1.5) holds with

* [ _ .
A-:Sijfl'”Sl, jZl,-~~,l€,

where §; are given by (5.6) and (5.7). This finishes the proof. O

6. APPENDIX

6.1. Proof of Lemma 2.1. In order to prove Lemma 2.1, we introduce the Green
function. For a fixed z € RV, let G(z,y) be the Green function of —A + Id, which
satisfies

G(z,y) =0 ly| = oo.
We have the following result.

Lemma 6.1. We have
C
|G(2,y)| < L for 0<|y—=2[<1,

and
G(z,y)| < Cly—z"2 e W2 for |y—z|>1.

Proof. By radial symmetry, we can write G(z,y) = G(r) with r = |y — z|. Since
G(r) is singular at zero and tends to zero at infinity, we can verify that G is given
by
N -2 -
G(’[") = T]HT2 2N K
(2m i1 () 2

where Kn—» (r) is a Modified Bessel Function of the Second Kind, see [15]. For
N = 3, the function G has the explicit form G(r) = ¢—. In general, we have that

4mr
N-—2 _
Kon_a (r) ~ %(%)sz for r close to 0, and Kn_» (r) ~ /5-e~" for r large.
Using these estimates, we obtain the result. O

Proof of Lemma 2.1. (a) It is a direct consequence of the maximum principle.

(b) Define the barrier function Q(z) = p = |z|~V+2). It satisfies —AQ(z) +
Q(z) > cp” = |z|~N+2 for all |z| > R with R > 0 a large constant, here ¢ is
positive constant. Since Q(z) = p 7  R-N+2 for 2| = R and U,(2) < wy(z) <
ozN,u¥|z|’(N*2) for all |z| > 0. Set p(z) = AQ(z) — U,(z) for some constant
A > 0, we then have —Ap(z) + ¢(2) > 0 for |z| > R, and ¢(z) > 0 for |z| = R by
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choosing suitable constant A. By the maximum principle we get U, (z) < AQ(z) =

N

Ap 7 2|72 for 2| > R.

(c) Using the representation

Ru() = [ | Gl =2y

and standard convolution estimates we can obtain the stated bounds for R,,. O

Set
Zy(2) = 0,Up(2), Zu(2) = Ouwy(2),
then Z,(z) satisfies

- 4
—AZ,+ 2, = 82wy 7?Z, inRY,
Zu(z) —0 as |z| = oo

We can write

Zu(z) = Z,(2) + 0uRu(2),
then 0, R, (z) satisfies

A0, Ru(2)) + 0uR,u(2) = —0pwp(z) in RY,
{6MRM(Z) —0 as |z] = .

We observe that | — d,w,(z)| < Cu~'w,, then we have

Corollary 6.2. One has

(6.1) |0,R,.(2)] < Cu™|Ru(2)| forV z € RY.
Moreover, by the maximum principle, we have that
(6.2) Zu(@)| < Cuz |27 for |2 > R,

where R is a large positive number but fived in Lemma 2.1.
6.2. Expansion of energy.

Proof of Lemma 5.3. The proof is very similar to the one in [20]. The difference
is that we have more terms in the energy and the initial approximation is also
somewhat different. We have

1 1 :
JU) = [i/RN(|VU|2+U2)—p*+1/RN v +1}

+ 1 /Up*—i-l_ 1 / P tite| _ A / att
P+ 1 Jgw p*+14e Jpy q+1 Jpn

(6.3) = Ji+J2+ Js,

k
where U = Y Uy, with Uy, = w,, + R,,;.
j=1

As in [20] but using the estimates of R, in Lemma 2.1 we can get

k 1
S o= =k “/ —d
! NN Jen A+ 2PN

_1 N-—2

AlJrl) 2 *11 1 1
6.4 —& bt / dz + o(¢).
(04 —~ ( A VU e G ol

E
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Also as in [20] we obtain

B et o w
_gp*lj_ 1a§’v+1 /RN T |12|2)N log T |C:|\;)N72 dz
+€(N4;V2)2 (a,],\;ﬂ /RN (1+| g dz)ZlogA

O o )
(6.5) X Z( 2_1 N+2_2(N_2)q)510g6+0(5).

We will do with detail the estimate of the term Js3.
2
Given § > 0 small but fixed. Let py,--- , ug be given by (2.9), set pg = % and
pr+1 = 0. Define the following annulus

Ai == B(0, \/,ul-,ui,l)\B(O, \/,Ui,uiJrl)a for 1=1,-- k.

k
We observe that B(0,0) = Ule A;. On each A;, the leading term in ) Uy, is Uy, .
j=1

Then we have
q+1

k k k
—lg+1)J Z/ Ut S U] Ut vy Y U
=1 J=1,#l 321 J#l
k k a1
oY [ e aw) z > ULl +A [ S0,
= A AT RN\B(0,5) \ =1

= J31+J32+ J33+ J34.

By the mean value theorem, for some ¢ € [0, 1], we have

qg—1 & 2
J31 = Uy, +1t Z Uy, > U,
J=1,5#1 J=1,j#1
gc,\Z/waerC,\ 5 /w
Jl=1,#1 3,5,0=1, i,j#l

Since

k
a—1,, —
> Jowttd = Y
Jyl=1,j#1 Jil=1,j#1
k
=1,

IN

(6.6)
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and
©7) > /wﬁzlwij < (/ wz—:—l) (/ wﬁ;q) |
i,5,0=1, i,j#1 Ay i,4,l=1, i,j%£1 Ay A,
If 7 > [, then
N—2 N_o
2 4 >
ILL.
/wq w, dz = aq-‘rl / Hy J dz
py G N 2 o\ N2 2 2
+ |z a4 (2 + |z B
A <2 < =T (i + 121?) (13 + |21?)
N-2 1 1
j 2 _N-2_ , N+2
= (ﬂ) O g+ Oétj]\;i—l/ N SR
M RV (14 |2]2)77 ¢ |2|
(6.8)

If j < I, then

N-—2 N-2
2 4 2
M,
/wq w,. dr = ol / al J dz
iy MG N 2 2 N—2q ) o\ N2
+ |z 2 © + |z 2
1 . fp— (i +12[?) (15 +12[?)
N—2
p) N+2 1 1
= (ﬂ) /Ll Y 2q+ ¢]1V+1 / —_dz
Hj (1+]22) 0 (14 (& L)21z[?)
—1
\/_
1 N;2 _N—2q+N+2 +1 1
< — Ky (]IV Nz, d2.
Hi N (I+[z?) =1
(6.9)
For i # [, we have
pN Y T .
N-2g) Ni2 (_)2 if i <l-1<1;
+1 - qt+—5— 23
©.10) [ugt < e oo
(=t—)"=z7¢ if i>14+1>1

A Hip—1

From (6.6)-(6.10), (1.4) and (2.9), we get J3 1 = o(e).
Moreover,

J3,2

/\Z/ wq+1+/\2/ Uq+1 wq-‘rl)

AT 2)q/\/ ! dz + ofe)
= € T z +o(g).
1 (14 [af2) 5

From (6.8) and (6.9), we have

J33<C)\Z/ Z Ul Uy, <C)\Z/ Z wl wy, = o(e).

Lj=1,j#l Avj—1 541
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Finally,
k atl k
J34 = )\/ Uy, <C / wittdz = o(e).
RN\ B(0,0) Z; Ha g; RN\B(0,0)
Thus we get
6.11) J AL A ! d
(6.11) 3= —¢el\y 71 / 1+ |Z|2)<N—2g<q+1) z 4 o(e).
RN
From (6.3), (6.4), (6.5) and (6.11), we obtain (5.3). O
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