foto Duvan

Duvan Henao

PhD in Mathematics, University of Oxford, United Kingdom (2009)
Bachelor degree in Mathematics, Universidad Católica de Chile (2004)

Position: Assistant Professor

Institution: Pontificia Universidad Católica de Chile

Research area: Nonlinear Analysis.



Phone: +562 2354 5971

Adress: Vicuña Mackenna 4860. Santiago, Chile.


  • D. Henao; J. F. Babadjian; Reduced models for linearly elastic thin films allowing for fracture, debonding or delamination, submitted [preprint]
  • A. Majumdar; A. Pisante; D. Henao; Uniaxial versus biaxial character of nematic equilibria in three dimensions, submitted [preprint]
  • C. Mora-Corral; M. Barchiesi; D. Henao Local invertibility in Sobolev spaces with applications to nematic elastomers and magnetoelasticity, submitted [preprint]
  • C. Mora-Corral; D Henao; X. Xu A numerical study of void coalescence and fracture in nonlinear elasticity, submitted [preprint]
  • D. Henao; C. Mora-Corral; Regularity of inverses of Sobolev deformations with finite surface energy, J. Funct. Anal. 268 (2015) 2356–2378 [ScienceDirect]
  • C. Mora-Corral; D. Henao; X. Xu Gamma-convergence approximation of fracture and cavitation in nonlinear elasticity, Arch. Ration. Mech. Anal. 216 (2015) 813–879 [Springer]
  • D. Henao; D. Hurtado; Gradient flows and variational principles for cardiac electrophysiology: toward efficient and robust numerical simulations of the electrical activity of the heart, Comput. Methods Appl. Mech. Engrg. 273 (2014) 238–254 [Elsevier]
  • A. León Baldelli; J.-F. Babadjian; D. Henao; B. Bourdin; C. Maurini A variational model for fracture and debonding of thin films under in-plane loadings, J. Mech. Phys. Solids 70 (2014) 320–348 [Elsevier]
  • A. Majumdar; D. Henao Symmetry of Uniaxial Global Landau–de Gennes Minimizers in the Theory of Nematic Liquid Crystals, SIAM J. Math. Anal. 44 (2012) 3217–3241 [SIAM] & 45 (2013) 3872–3874 (corrigendum) [SIAM]
  • D. Henao ;S. Serfaty Energy estimates and cavity interaction for a critical-exponent cavitation model, Comm. Pure Appl. Math. 66 (2013) 1028–1101 [Wiley]
  • D. Henao; X. Xu An efficient numerical method for cavitation in nonlinear elasticity, Math. Models Methods Appl. Sci. 21 (2011) 1733–1760 [World Scientific]
  • C. Mora-Corral; D. Henao Lusin’s condition and the distributional determinant for Sobolev deformations with finite energy, Adv. Calc. Var. 5 (2012) 355–409 [de Gruyter]
  • C. Mora-Corral; D. Henao Fracture surfaces and the regularity of inverses for BV deformations, Arch. Ration. Mech. Anal. 201 (2011) 575–629 [Springer]
  • C. Mora-Corral; D. Henao Invertibility and weak continuity of the determinant for the modelling of cavitation and fracture in nonlinear elasticity, Arch. Ration. Mech. Anal. 197 (2010) 619–655 [Springer]
  • D. Henao Cavitation, invertibility, and convergence of regularized minimizers in nonlinear elasticity, J. Elast. 94 (2009) 55–68 [Springer]
  • D. Henao; M. García-Huidobro On the uniqueness of positive solutions of a quasilinear equation containing a weighted p-Laplacian, the superlinear case, Commun. Contemp. Math. 10 (2008) 405-432 [World Scientific]